DG2020/03/11 Wednesday, March 11, 2020 11:41 AM

Interpolation of shape functions:

Remember that for time marching schemes, the solution was interpolated as,

DG Page 1

Side note: From the methods on the left, one can come up with novel time integration schemes

de note: From the methods on the left, one can come up with novel time integration schemes	0 18
TNNI NOD CFEM	Ğ 15→18
A=2 2 Nr X X (Nob) Nob) Nob) Az1) Az1 Purchas	$\gamma \rightarrow \gamma \gamma$
Ab (4)	b 1,25 1-36
If we follow up a formulation with this type of spatial mesh extrusion in time the basis function in time, we can come up for high order time integration schemes for time marching methods.	adive

If we follow up a formulation with this type of spatial mesh extrusion in time and basis function in time, we can come up for high order time integration schemes for time marching methods.

In fact, by using shape functions like this and integration of the balance law in spacetime and getting rid of time dependencies, we get something similar to RK implicit methods, etc. There are many examples in the literature that time integration schemes are derived this way for a particular problem.

We'll mostly focus on "causal" spacetime meshes

4

tep

We'll do two sample formulations for the thermal heat conduction and elastodynamics.

General weak statement:

с \cap 2

wFn ds=0 dv t

For continuous FEMs we cannot isolate and element and have w = 1 only in that element. Because of this, for cFEMs we can only ensure the satisfaction of balance laws for the entire (spatial / spacetime) domain by setting w = 1 everywhere.

For DG methods, we can set w = 1 only in one element and recover the balance laws per element. This is a selling point for DG methods. Satisfaction of balance laws at the element level is highly desired and very important in many applications (electromagnetics balance of charges, ...)

Х

Expansion of (A Va $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} + \frac{1}{$ Ű $) dv + \left(\omega \left(\begin{array}{c} f_{a_n} \\ f_{a_n} \end{array} \right) \right) ds = 0$ Fre - wr Fring & $\int \left\{ \nabla \omega f_{h} - \omega f_{h} - \omega f_{h} \right\} dv + \int \omega \left(f_{h}^{*} + f_{h}^{*} \right) ds = 0$ $\sum_{i=1}^{n} \int \sum_{i=1}^{n} \omega \left(f_{h}^{*} - \eta f_{h}^{*} - \eta f_{h}^{*} \right) ds = 0$

DG Page 3

Two ways to fix the issue with vertical interfaces (and in general a term multiplying nx)

Recall from prior discussion that in many DG formulations for elliptic PDEs we needed this penalty term for stability. For parabolic PDEs, we don't need to have this. You can refer to all those papers that discuss different forms of numerical fluxes for parabolic PDEs

> New Volume (D:) > MyDocuments > acd > courses > DG > DG_course > Papers > Fluxes > ParabolicFluxes

$\frac{1}{2} = \frac{1}{2} = \frac{1}$] Name
We don't have the penalty term added for a. 3) Be surably add a jump term to the bandwy URS: $J = (C = T + \nabla \cdot q - 6)dr + J = (T = T) + J + J + J + J + J + J + J + J + J + $		Baumann_1999_A discontinuous hp FEM.pdf Shu_2001_49_Different formulations of the discontinuous Galerkin method for the viscous terms.pdf Zhang_2003_Shu_44_An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations.pdf
2) Basically odd a jump tem to the bundary URS: $\int f(GT+V,q-6)dr + \int f((q-q), nv + (T-T)n+fds)$ $\int g(kq+VT)dv + g(q-n) (T-T) ds = 0$ 2 field for mulotic for T, q $T = \begin{pmatrix} r \\ r$		We don't have the penalty term added for q*.
$\begin{split} & \mathcal{RS}: \int f(\zeta T + \nabla q - \delta) dr + \int T((q^{2}q) \cdot nx + (T - T) n+) ds \\ & \qquad \qquad$		Basically add a jump term to the boundary
$\frac{2 \operatorname{field}}{2 \operatorname{field}} \operatorname{for mulotic for } T, 9$ $\frac{2 \operatorname{field}}{1 - 1} \operatorname{for mulotic for } T, 9$ $\frac{7 - 1}{7 - 1} for mulotic for m$		$WRS: \int T(ST+V.q-6)dr + \int T((9-9)\cdot nx + (T-T)nf)ds$
2 field for mulatin for T, 9 T = $\chi + \chi$ $\int_{1}^{1} \int_{1}^{1} \eta = [\eta] = \int_{1}^{1} \int_{1}^{1} \eta = [\eta]$ P=2 $\eta^{2} \eta + F$ $\int_{16}^{1} \eta = [\eta] = \int_{1}^{1} \int_{1}^{1} \eta = [\eta]$ clevent has (12) dobs $k^{2} \eta = -VT + 0$ $\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \eta = \chi + \chi$		$\begin{cases} q \left(kq + \sqrt{T}\right) \right) v + \epsilon \left(q \cdot n \left(T^{*} - T\right) \right) ds = 0 \\ \int Spectral decryostic dec$
$T = \frac{1}{12} + \frac{1}{15} = \frac{1}{12} + \frac{1}{15} = \frac{1}{12} + \frac{1}{15} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \frac{1}{$		2 field for mulatin for T, 9 71 X
clevent has (2) dobs $k^{2}q-VT \neq 0$ $Sq(kq+VT) dv$ weakly Sadisfier it. $2F_{-}(F q = -KVT -)$ get id of this $\widetilde{g}(k^{2}q+VT) dv : 0$		$T = \chi + \chi = \frac{1}{15} \qquad \qquad$
Salishing is. $\overline{ZF}_{,1}F$ $q = -KVT \longrightarrow get id of this \overline{g}(kq + VT) dv = 0$		clevert has (2) loss 1×9-VT +0 Sq(kg+VT) dr weakly
\overline{ZF} , \overline{IF} $q = -K\overline{VT}$) get id $\overline{Jh_{is}}$ $\int \widehat{g}(k\overline{q} + \overline{VT}) dv = 0$		Salistic il.
$\int \widehat{g} \left(\left(\frac{1}{2} + \sqrt{1} \right) \frac{1}{2} \right) = 0$		ZF_, IF 9 KVT -> get id of this
_	Г	$\int \widehat{g} \left(\left(E^{-1} q + \sqrt{T} \right) dv = 0$

CRS (-1 - JE VI) & L(-1 (P -))

