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| referred you to 2018 notes for linear Riemann solutions for hyperbolic PDEs

Today, we solve a 2D problem.
In 2D and 3D problems it's easier to solve the Riemann problem in local coordinate
system
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That's the motivation of going to a local coordinate system, to get rid of
derivatives with respect to y2 (and y3)

Fy is obtained from Fx using coordinate transformation rules. !
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By going to local coordinate system, not only we directly solve a 1D Riemann solution, but we don't end up computing things that we don't
even need (f*y2 is not needed and we won't compute it)

There is another way to formulate Riemann solution
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@ If needed go back to the original global coordinate system. < QY\M W&Q& \g OQ{%\i gMM
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(*) In general the WRS (WK) are objective, meaning that they have the same tensorial expression in x and y. So, it's much easier to directly write the
WK in y (local) coordinate system to begin with.
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Elastodynamic weak statement:
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3D elastodynaimcss problem L(] 1
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| prefer to work with spatial flux quantities in vector g because:
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1) In case of material property jumps spatial fluxes remain continuous on vertical interfaces, so choosing spatial flux quantities in q will result in
simpler solution and express of Riemann solutions.

d spatial fluxes on vertical faces anyways (for most DGs we only care about the Riemann solution on vertical faces)

2) Eventually we
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Reading assignment:
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@IS @25 l:)35 @45 l:)SS @56
A=— Dy Dy Dy Diyy Dis Dy (15)
DI3 D23 D33 DN D35 D36

and
0 0 0
0 0 0
_ 0 0 1/p
B=- 0 Alp @ P (16)
I/p 0 0
0 0 0

With the consideration of heterogeneous material on the both sides of the interface, (14) has 9 eigenvalues, which are

comprised of 3 negative . 3 zero and 3 positive eigenvalues as

A =diag(-E,, -E». -E3,0,0,0, +Ef, +E5, +E7) (17)
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where the superscript “+" means a variable from the opposite side of the interface. Since —C is a block anti-diagonal
matrix, the 3 non-zero eigenvalue square matrix ng 3 can be solved from

Dss Dis Ds
» e
M3x3 = A3x6B6x3 = % D—“ _7'4 (18)
PP P
Be bu by
PP P

whose eigenvector matrix is Rj, 3. We have also successfully applied this good property to the large system matrix in
viscoelastic wave modeling [41]. We can conveniently perform diagonalization:
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2006_Reza_Abedi_SDG_Elastodynamics.pdf

Appendix B. Definitions of Godunov values

The following subsections present expressions for the Godunov values of stress and velocity. The Godunov
strains are obtained by applying the inverse constitutive relation to the Godunov stresses, and the Godunov
momentum densities are obtained by applying the forward constitutive relation to the Godunov velocities.

B.1. Godunov values for solutions on E' x R
Let ¢ = \/E/p denote the elastic wave speed in which E denotes Young’s modulus. We drop all sub-
scripts in this section since there is only one spatial direction. Consider a causal patch in E' x R, as shown
in Fig. B.1(a). The Godunov values of the mechanical fields on the noncausal interface I' 4 are functions of
the fields on the adjacent elements. Q, and Qp:
1 E
G _ ° sl 7 R p
1 —2(a’+a")+2c(u ii"), (B.la)

u0=%(a=+i,”)+§%(a"-a’). (B.1b)

Fig. B.2. Causal patch in £ x R with noncausal interface I’ ap-
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Fig. B.3. Coordinates and inclination of a noncausal interface in E* x B: (a) local coordinates on noncausal interface I',p. (b) regions
(RI-RIV) for classifying the inclination of the interface I',.
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