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Shock capturing: 473K elements Shock tracking: 446 elements
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Same concepts can be used in 2D / 3D: @Q}Q%ﬁer examples
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Burger’s equation ,, + (l”i) =0

Difference between shocks and contact discontinuities in general: In contact discontinuity, the characteristics across discontinuity are parallel (they don't
collide as in shocks). That is in contact discontinuity, the characteristics are like how we have them for LINEAR conservation laws across discontinuity.
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(4.1) _ " U, + f(U), = 0.

The discussion on the lgear transport equation
(4.2) Ui +al, =
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Q\‘\Q\M 3 (a) Interacting Riemann wavn:di\d‘(\{ (b) Non-interacting waves.

F1GURE 4.3. Left: Waves of Riemann problems from neighboring
interface can interact after some time. Right: The waves can be
prevented from interacting before time At by the CFL condition
(4.9)

Arnold_2000_Discontinuous Galerkin methods for elliptic problems.pdf
@ Let K = K be an element in the triangulation, and let e be
one of its edges. Assume first that e is an interior edge of our triangulation,
so that there is a second element K, sharing the edge e with K;. We then
assume that h:;"" and hf‘"" depend on the restrictions up |k, and ok, of up
and o, to K;, i = 1,2. More prec\is&y. locality means that

Y e

K 1eJ
hy™ = he ™ (unlk, . Onlk, s Uhl Kz OnlKa)-

Actually, in all our examples, this fuentional dependence will have a special
form in that both hS* and hS® will depend only on the traces of up|k, .
Vup|k,, and o4k, on the edge e. Since up, Vuy, and o5, will, in general, be
discontinuous across e, the trace of uy|x, on e will be different from the trace
of up|, on e, and similarly Vu;, and o), will each have two different traces
on e. Thus Il:;"" and h%® will depend linearly on the six quantities
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Exercise 4.1. Computing the flur (4.14) can be complicated, since an optimization
problem has to be solved. Show that in the special case where the (fillEfineEon /
& GRdoNotalRaEEmG. (1o formula (4.14) can % \/@f/‘( K 6{/\/)

be simplified to
(4.15) F}y.,=FU!\U,) = Illd\(f (max (U, w)), f(min (U}, uJ))).
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Godunov flux is exact, it's difficult to compute, but for 1D convex flux, it can take a simple form. In general, getting the Godunov flux (exact
Riemann solution) is challenging.

Shock example:

4.1.6. Numerical experiments. Consider Burgers’ equation (3.3) with Rie-
mann data

1 ife<O e
4.16 U(x,0) = - ooy )1 it <0
(4.16) (x,0) {“ x>0, (4.17) Ulz,0) = {1 ool
0.8 . ° }
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(b) Initial data (4.17) at time t = 0.5.

(a) Initial data (4.16) at time £ = 1.

Approximate Riemann so lutions:

1. Roe flux (linearlized) flux
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(4.19) F(U)e = 'O Ajppes
where A ~ f is_a_constant state around which the nonlinear flux function is

linearized. There are many possible candidates for the linearizing state, one simple

choice being
\g et

the flux of the arithmetic average of the two constant states. We will use a more
sophisticated Roe average:

fWUN ) =FUT) sepm n
(4.20) Ajpyy = { vy, -0y EUin#Uj ( )
£1(Ur) if U, = U

—_

Roe flux for Euler's equations:
cws06_steiner_riemann.pdf

Consider again the Riemann problem

qr + f(q}r

) q if =<0,
qlxr,0) =

q- if x>0,

where for the r-split three-dimensional Euler equation

p pu
pu pu® +p
a=| pv |, flg)= puv
pw puw
E u(E +p)

Using the chain rule, the conservation law

q +flq): =
may be written as
)f
qt +Alq)g: =0 A(q) = o
e
Roe's approach consists in replacing the Jacobian matrix A (q) by a constant Jacobian e \@‘f)
- %\ ala SN «o\\W
A=A(q.q W\ WA
—_—

resulting in the Riemann problem for the linear system

RN / /
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which can be solved exactly.

The Roe solver (cont.)

Roe requires the constant Jacobian matrix A = A{q;. q, ) to satisfy the algebraic
properties of the Jacobian A(q), i.e.,

These conditions may be fullfilled wit
used in the formulae for \; and k'*) shown on the brevious pages:

- \/P_!ut + Prur

. = BV W g - Y+ oty
— j— VL + \/Pr
5 = VPIUL T A/ PrUr ‘ 1
VPL+ \/Pr a = (y-1)[H- —1 2z,
w = —V.ﬁii—’_ \.-"E“’r , V2 = @2+ 4w,
VAl + v Pr

2. Consistency. All the methods we consider are consistent in the sense
that, in the functional form described above, <

h;"‘(uél\'].Vu Ky UKy, Viu|k,) = Vule,

Ko
hy™ (ulky, Vulk, , ul Ky, Vulk,) = tle,
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(a) Shock solution with initial data (4.16) at (b) Rarefaction wave solution initial data
t=1. (4.17) at t = 0.5.

FIGURE 4.6. Approximate solutions for Burgers equation with the
Roe scheme with 50 mesh points. [burgers_disc.m]

Roe flux can only model one jump between left and right states and is in capable of modeling rarefaction waves:(

Central Schemes OR

3.1. The Riemann solver of Harten, Lax, and van Leer (HLL)
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Another equivalent derivation by writing balance laws in spacetime

3.1. The Riemann solver of Harten, Lax, and van Leer (HLL)

Consider the system of one-dimensional conservation laws

i <0,
qet + f(q). =0, q(z,0) = q if a
qr i 2>0.
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The integral form in the control volume [, x,.] x [0, T is given by:

Ty - T W i
/ q(z,T)dx = / q(x.0)dx + / f(q(x. t))dt — / f(q(xr.t))dt
Jor JO

1 Jxg JO
The HLL solver (cont.)

- T 7
/ q(z,T)dz = / q(z,0)dz + /(j f(q(z,t))dt —/0 f(q(zr,t))dt
Jr .

Ty

= zrqr—aqu+THE—f), f=Ffa), fr=~Ff(qr)

Ty Ts Tsy T
/ TV = / 'q(x.T)d“/ q(;t.T)d;r+/ a(z,T)dz
Jx E JTs; JTs,

Ts,r
/ a(z,T)dz + (Ts; — z)a + (zr — Tsr)ar
JTsy

TSV. ) . B
1 / q(z,T) dz i= g™ = 29 — i + fi — £

T(s, — s1) . Tsy )

The HLL solver (cont.)
Applying the integral form to the control volume

u
seu-a fy o sewa [x7,0] x [0, T] we obtain:
A4 .
AN ZR / q(z, T)dz = =Tsiqq + T(f; — for) ,
! | ! v Tsy
! ! ¥
X Ts Ts, % where fiy; is the flux f(q) along the t-axis. Hence,

1 0
for =i —sjqp — s /T q(z,T)dx.
. }‘I

Doing the same for the control volume [0, x,.] » [0, T'] leads to

1 TH‘..
m=ﬂ—&m—f[ az, T)dz.
J0O

It follows that

for = fo, .
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The HLL solver (cont.)

Harten, Lax, and van Leer put forward the following approximation:

s s,
q T <9
f’{,f'.f} = thl if 5 < % < s,
q, q, ) .
qr if T2 5
- X
o _1_31{(1}11! —q) or
gl _ £+ S,-(qhu —a)

. o sefi — sife + sis0(qr —
ﬁ(T - Sr = 81 AL S\w\

omionsfo\?;;i%
LQ\% . R\&X\f \()\/\5 SR

Y Ny

In particular, if we choose the speeds to be equal but of opposite sign, so s” =

—s! = s, then (4.25) reduces to _ CL =<
. FOUM) + f(U) (Si4vy2),, 0 »
(4.26) = lff“ _J‘:@(UHI ~ )
T X n n f(U,l) + f({)rl'l )
(4.29) n = P (U Un,,) = me c Owkm\;\g

—
s 1{—Eact
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(a) Shock solution with initial data (4.16) at (b) Rarefaction wave solution with initial data
=1 (4.17) at t = 0.5.

FIGURE 4.8. Approximate solution for Burgers' equation with the
Lax-Friedrichs scheme with 50 mesh points. [burgers_disc.m]

4.2.4. Rusanov scheme. The Lax-Friedrichs scheme was quite diffusive arounc
shocks. A possible explanation lies in the choice of the wave speeds (4.28) (eS8

speeds were the maximum allowed speeds and did not take into the account the
SpeEselpTopAEAtioNONEPIObIEHNNASHEONSIARRGGH) A botter. locally sclected.

choice of speeds is given by

(4.30) _S;_’_‘/g = sj+l/2. S§+1/2 = —Sj+l/2.

where & B

Sj 417, =max (| f C\/ </()\
sedrichs) flux, is given

The resulting flux (4.26), called the Rusanov (or Loe
by

Jeya =F (U7, )

(4.31) UM+ FUR)  max (IFUM)], U] A~
- J 5 i+ J 5 it (Un, - Um). (/J,(, Co\p v &9 o
The Rusanov scheme (4.13), (4.31) leads to a considerable improvement in results =V W U(}/\ (Q_

over the Lax-Friedrichs scheme, as shown in Figure 4.9.

J"+l/2 = FRUS(UJP‘ ;+1)
WA _ U+ 1) max (IFU)] S (U)])
2 2

(Ui - UF)-
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(a) Shock solution with initial data (4.16) at (b) Rarefaction wave solution with initial data
=1 (4.17) at t = 0.5.

FIGURE 4.9. Approximate solution for Burgers’ equation with the
Rusanov scheme using 50 mesh points. [burgers_disc.m]
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