If a vector space has an inner product operation, we call it an inner product vector space

\[\langle f, g \rangle = \int_a^b f(x)g(x) \, dx \]

This is the L2 space (square integrable functions) in \([a, b]\) defined as

\[\mathcal{L}^2([a, b]) = \{ f : \int_a^b |f(x)|^2 \, dx < \infty \} \]

We can show that \(\mathcal{L}^2([a, b]) \) is a vector space.

\[\langle f, g \rangle = \int_a^b f(x)g(x) \, dx < \infty \]

\[\langle f, f \rangle = \int_a^b f(x)^2 \, dx = \| f \|_2^2 < \infty \]

\[\langle g, g \rangle = \int_a^b g(x)^2 \, dx < \infty \]

This is the L2 space (square integrable functions) in \([a, b]\) defined as

\[\mathcal{L}^2([a, b]) = \{ f : \int_a^b |f(x)|^2 \, dx < \infty \} \]

This is a subspace (a subset of a vector space that itself is a vector space) of \(\mathcal{V} \) and in fact it is an inner product vector space.

\[\| f \|_2 = \left(\int_a^b |f(x)|^2 \, dx \right)^{1/2} \]
Remember for vectors \(\langle v, w \rangle = |v||w| \cos \theta \)

\[\cos \theta = \frac{\langle v, w \rangle}{|v||w|} \]

From here we can define the angle between \(f, g \) as

\[\cos \theta_{fg} = \frac{\langle f, g \rangle}{\sqrt{|f|^2} \sqrt{|g|^2}} \]

We know \(|\cos \theta| \leq 1 \). How do we know \(|\langle f, g \rangle| \leq |f||g| \)?

Cauchy-Schwarz Inequality

Proof:

Given any inner product vector space \(\mathbb{V} \) over \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \),

\[\langle f + \alpha g, f + \alpha g \rangle \geq 0 \quad (1) \]

\[\langle f + \alpha g, f + \alpha g \rangle = \langle f, f \rangle + 2\Re(\langle f, \alpha g \rangle) + |\alpha|^2 \langle g, g \rangle \quad (3) \]

\[f, f + \alpha(g, f) + \alpha (g, f) + |\alpha|^2 g, g \]

\[= |f|^2 + |\alpha|^2 |g|^2 + 2\Re(f, g) \]

\[= |f|^2 + |\alpha|^2 |g|^2 + 2\Re(f, g) \]

\[\geq 0 \quad (4) \]

This is a quadratic polynomial in \(\alpha \),

\[A\alpha^2 + B\alpha + C \geq 0 \quad \Delta = B^2 - 4AC < 0 \]
\[(2f \cdot g)^2 - 4(g \cdot g) (f \cdot f) \leq 0\]

\[0 \leq (f \cdot g)^2 \leq (f \cdot f) (g \cdot g)\] take square root

\[|f \cdot g| \leq |f| \cdot |g|\]

Triangle inequality: \(H^n, \ell^1\)

\[\forall f, g \quad |f + g| \leq |f| + |g|\]

\[\text{Hint: work with the square of } \otimes \text{ & use (CS) after that.}\]

Going back to \(L^2(a,b)\)

Why \(\langle f, f \rangle = \int_a^b f^2 \, dx < \infty\) \(\quad \Rightarrow \int_a^b g \, dx < \infty\)

\[\langle f, g \rangle \leq \sqrt{\langle f, f \rangle} \sqrt{\langle g, g \rangle} < \infty\]

Normed vector space:

From an inner product we defined "magnitude" as:

\[|f| = \sqrt{\langle f, f \rangle}\]

1. \(|f| = |\|f\|_1|\)

2. \(|f| \geq 0\) \& \(f = 0 \Rightarrow |f| = 0\)

'absolute value' operator on vector
- A norm operator has exactly the 3 properties listed above.
- Unlike inner product that acts on two vectors, norm acts only on ONE vector
- Any inner product defined a norm (its magnitude operator is a norm) BUT the opposite is not true (Cannot always define an inner product (space) from a norm (space)).

General definition of a **norm**:
For a vector space V, a norm has the following properties

\[\forall v \in V, \quad \|v\| = |\lambda| \|v\| \]

2) \(\|v\| \geq 0 \) & \(\|v\| = 0 \) if\(v = 0 \)

3) \(\|v + w\| \leq \|v\| + \|w\| \) **triangle inequality**

An example of a normed space that is not an inner product space

\[
L^\infty([a,b]) = \left\{ f \mid \max_{x \in [a,b]} |f(x)| < \infty \right\}
\]

\[
\|f\|_\infty = \max_{x \in [a,b]} |f(x)|
\]

\[
\|f\|_\infty = \text{max} \mid f \mid_{x \in [a,b]}
\]

\[
\|f\|_\infty \quad \text{this is a norm}
\]

but \(L^\infty([a,b]) \) is not an inner product space.

Coordinates and coordinate transformation:

Linear independence:

\[
V_1, V_2, \ldots, V_n \in V \quad \text{are called linearly independent if}
\]

\[
\forall \} \quad \text{vector space}
\]
Continuum Page 5

For \(\alpha_1, \ldots, \alpha_n \neq 0\):

\[\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 \quad \Rightarrow \quad \alpha_1, \ldots, \alpha_n \text{ must be zero.} \]

\[2v_1 - v_2 = 0 \]

Not independent.

Basis \(e = \{e_1, \ldots, e_n\} \) for vector space \(V \) has the following properties:

1. \(e_1, \ldots, e_n \) are linearly independent.
2. Any vector \(v \) can be expressed in terms of the basis.

Dimension of vector space \(n \) is coordinate of \(v \) w.r.t. \(e \) coordinate system.

Examples for basis:

\[v_1 \]

\[v_2 \]

\(e_1, e_2 \) are not satisfied property 1 is violated.

\[(5,5) \]

Natural coordinate for triangle (for all simplices).
Interpretation of coordinates of a vector in a given orthonormal basis

\[V_i = \text{?} \quad \text{in an orthonormal basis} \]

\[V = V_i \cdot e_i \]

\[V \cdot e_j = (V_i \cdot e_i) \cdot e_j = \delta_{ij} \]

\[= V_i \cdot (e_i \cdot e_j) \]

Orthonormality of the basis

\[V_i = V \cdot e_i = |V| \cos \theta_i; \quad |e_i| = P_{e_i} \]

Coordinate transformation:

\[V = V_1 e_1 + V_2 e_2 \]

\[(V_1, V_2) \]

\[V \]

Continuum Page 6
\[\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 \]

\[\mathbf{v} = \mathbf{v}_1 \mathbf{e}_1 + \mathbf{v}_2 \mathbf{e}_2 \quad (\mathbf{v}_1, \mathbf{v}_2) \]

\[(\mathbf{v}_1, \mathbf{v}_2) \rightarrow (\mathbf{v}_1', \mathbf{v}_2') = ? \]

In general, \((20,31)\) we can write

\[e_i' = Q_{ij} e_j \]

\[e_i' \cdot e_k = (Q_{ij} e_j) \cdot e_k = Q_{ij} e_j \cdot e_k = Q_{ij} S_{jk} \]

\[e_i' = Q_{ij} e_j \quad \rightarrow \quad Q_{ij} = e_i' \cdot e_j \]

Component \(j\) of \(e_i'\) in coordinate system \(\{e_1, \ldots, e_l\}\)

\[Q = \begin{bmatrix} e_1' & e_2' & e_3' \end{bmatrix} \]

\[e_i' = Q_{ij} e_j \quad Q_{ij} = e_i' \cdot e_j \]

\[\mathbf{R}_{ij} = \mathbf{Q}_{ii} \]
\[e_i = Q_{ij} e_j \quad \Rightarrow \quad Q_{ij} = e_i \cdot e_j \]

\[e_j = R_{ji} e_i \]

\[\Rightarrow \quad R_{ji} = e_j \cdot e_i \]

\[e_i' = Q_{ij} e_j \]

\[e_j = Q_{ji} e_i \]

\[\{ e_i' \} = Q \{ e_i \} \quad \Rightarrow \quad \{ e_i' \} = Q^{-1} \{ e_i \} \]

\[\{ e_j \} = Q^T \{ e_j \} \]

\[Q^{-1} = Q^T \]

\[Q \text{ is an orthogonal matrix} \]

\[Q^T Q = (Q^{-1} Q) Q^T = I \]

\[Q^T = \begin{bmatrix} e_1' & e_2' & e_3' \\ e_2' & e_3' & e_1' \\ e_3' & e_1' & e_2' \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \\ e_2 & e_3 & e_1 \\ e_3 & e_1 & e_2 \end{bmatrix} \]

\[e_i' - e_j = \delta_{ij} \]

What is the use of \(Q \)?

\[V = V_i e_i \]

\[e_j = Q_{ij} e_i \]

\[\Rightarrow \quad V = (Q_{ij}) e_i \]

\[V = \begin{bmatrix} e_1' \\ e_2' \\ e_3' \end{bmatrix} \]
In general for n^{th} order tensor

\[T_{i_1 \ldots i_m} = Q_{i_1 j_1} Q_{i_2 j_2} \ldots Q_{i_m j_m} T_{j_1 \ldots j_m} \]