Higher order tensors:

## Motivation

In 1D stress is related to strain through elastic modulus:

$$
\sigma=E \varepsilon \quad \varepsilon=u, 9
$$

In 2D and 3D, stress and strain are second order tensor

$$
3 i
$$

$$
\varepsilon=\frac{1}{2}\left(\nabla u+\nabla_{u}^{\top}\right)
$$


$\sigma=E \varepsilon$


liner
Ind adder tensor.

$$
1=2-1
$$

Inidicial notation for this equation


4th order and higher order coordinate transformation:



A four-indexed array that follows this transformation rule is a 4th order tensor

$$
(\underbrace{u_{1}\left(x u_{2} \otimes u_{n}\right.}_{n^{1 h} \text { or dx tensor }}) w=\left(u_{n} \cdot \omega\right)\left(u_{1}(x) u_{2}(x) \ldots(x) u_{n-1}\right)
$$

similar to dyadic product $\quad\left(u_{1}\left(\uplus n_{2}\right)^{w}=\left(u_{2}, w\right) u_{1}\right.$


See definition 46 for components of m'th tensor

Theorem 84 for equation (*)
Theorem 88 for coordinate transformation of m'th tensor

Tensor product in general:


Identity matrix for higher order tensors

$$
I_{V} \text { atixixfor higher order tensors } \quad[I]=\left[\begin{array}{lll}
1 & 0 & \sigma \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\frac{m}{1}=\prod^{2 m} \frac{m}{1} \quad T_{i j k l}^{4}=\text { ? }
$$

1.13 The vector/cross/exterior product of vectors:

$$
\begin{aligned}
& A=|u| v \mid \sin \theta \\
& u \cdot v=|u| \mid v \operatorname{si\theta } \theta \\
& u \times v=?
\end{aligned}
$$

we use the 3rd order
 alterating tensor


$$
u x v=\epsilon_{i j k} u_{i v j e k}
$$

$$
u \cdot v \Rightarrow \text { scalar }
$$

s, ane unit vicars

Q: Is cross product associative?
$U \nexists(V \times W)=(U \times v) \times W ? N o$

Theorem 93 The vector product is not associative:

$$
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \neq \mathbf{u} \times(\mathbf{v} \times \mathbf{w}),
$$

indeed

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} & =(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} \\
\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) & =(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}
\end{aligned}
$$

Triple Product:


$$
=(\ell \times v) \cdot w
$$

$$
=\left|\begin{array}{lll}
e_{1} & e_{2} & e_{3} \\
v_{1} & \eta & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \cdot\left(w_{1} e_{1}+w_{2} e_{2}+w_{3} e_{3}\right)
$$


$\omega$


2nd order tensors that we have not covered yet:

1. Orthonormal


Lila UrGer tensors midi we fave itu covered yet:


Far second ardor Orthogonal tensors we hare

$$
\begin{gathered}
T T^{t}=T^{t} T=I \\
T^{t}=T^{-1}
\end{gathered}
$$

$c_{1} \quad c_{2} \quad c_{3}$

$$
\begin{aligned}
{[T]_{i)}=} & {\left[\begin{array}{c|c|c|c}
T_{11} & T_{12} & T_{13} & r_{1} \\
T_{21} & T_{2} & T_{23} & r_{2} \\
\hline r_{31} & T_{32} & T_{33} & r_{3} \\
& T^{+} T_{=1}^{\prime} & c_{i} \cdot c_{j}=\delta_{j}
\end{array}\right.}
\end{aligned}
$$

$$
r_{i} \cdot r_{j}=\delta_{i j}
$$

$$
T T^{t}=I
$$

What does an orthogonal tensor represent? Orthogonal tensors are rotations plus possibly 1 reflection

$$
T_{R}=\left[\begin{array}{r|r}
\cos \theta & -\sin \theta \\
\sin \theta & \operatorname{cit} \theta
\end{array}\right]
$$

Reflection w.r.t $y$ axis $\operatorname{det} T=\underline{\operatorname{cs}^{2} \theta+2^{2} \theta=1}$


Orthogonal tensors preserve angle, magnitude, inner product, and distances

The following statements are equivalent:

1. Te orth $\nu$
2.th.v Tu. $T_{v}=u \cdot v$ preserve

$$
\begin{aligned}
\sim^{T u} \cdot \Im v= & T^{t} T_{u} \cdot v \\
& =u \cdot v
\end{aligned}
$$

3. $\forall u \quad|T u|=|u|$ magnuide " when $T^{t} T=I \quad T$ orthingoral

$$
40 \forall u, v \quad\left|T u-T_{v}\right|=|u-v|
$$

$$
1 \Leftrightarrow 2
$$

$$
\begin{aligned}
& 2 \Rightarrow 3 \quad T u \cdot T_{v}>u \cdot v \Rightarrow T u . T u=u . u \Rightarrow|T u|=|u| \\
& 3 \Longrightarrow 2 \pi u|=|u| \\
& \left|T_{v}\right|=|v| \\
& \Gamma(u+v)|=|u+v|
\end{aligned}
$$

$$
\begin{aligned}
& \text { square all these }\} \Rightarrow T u \cdot T V=u \cdot V
\end{aligned}
$$

$$
\begin{aligned}
& Q Q^{+}=I \Longrightarrow \quad(\operatorname{det} Q)^{2}=1 \quad \operatorname{det} Q=\left\{\begin{array}{l}
1 \\
-1 \begin{array}{c}
\text { Rotation } \\
+
\end{array}
\end{array}\right. \\
& \xrightarrow[\text { same }]{\substack{V_{2} \\
x_{1}}} \\
& 1{ }^{1} \text { reflection }
\end{aligned}
$$



Definition of axis of a second order skew-symmetric tensor

$$
N=\left|\begin{array}{ccc}
0 & w_{12} & -w_{31} \\
-w_{12} & 0 & w_{23}
\end{array}\right|\left(f^{\prime}\right)
$$

$$
\begin{aligned}
& w_{i j}=-w_{j i} \\
& w_{11}=-w_{11} \Rightarrow w_{0,1}=0
\end{aligned}
$$

$$
\begin{aligned}
& V=\left|\begin{array}{ccc}
v & 1 & \cdots \\
-W_{12} & 0 & W_{23} \\
W_{31} & -W_{23} & 0
\end{array}\right| \\
& { }^{2} \pi^{3} \\
& \omega_{11}{ }^{\prime}=-\omega_{11} \Rightarrow w_{11}=v \\
& W_{u}=\left[\begin{array}{ccc}
0 & w_{1} & -w_{31} \\
-w_{12} & 0 & w_{23} \\
w_{31} & -w_{23} & 0
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{cccc}
w_{12} & u_{2} & -w_{31} & v_{3} \\
-w_{22} & u_{1}+ & w_{23} & v_{3} \\
w_{31} & u_{1}- & w_{23} & u_{2}
\end{array}\right]
\end{aligned}
$$

1-1 correspondend betureren vectors \& skew sym. and aber

$$
\begin{aligned}
& w_{i}=-\frac{1}{2} \epsilon_{i j k} W_{j k} \\
& W_{i j}=-\epsilon_{i j k} \omega_{k}
\end{aligned}
$$


a axis of ratation orthonsmal tonsar


Look at this from the top
Real change of length $=l \theta$ location

$$
\Delta u_{T}=Q u_{\perp}-u_{1}
$$



$\omega u \perp \approx Q u-u$

