Summary from last time on positivity of symmetric matrices
Sin

An example of how to form positive 2 nd order tensors:

$$
q^{u \cdot\left(f^{t}+u\right) \geq 0}
$$

$$
\underbrace{F u}_{V} \cdot \underbrace{T u}_{V}>0
$$

Square root of a positive and order tensor
Theorem 109:
S in Psym with principal frame $\left\{x_{x}^{x}\right\}$ such that

$$
S=\sigma_{1} e_{1}^{*}+e_{1}^{\infty} e_{2}^{*} x e_{2}^{\infty}+\sigma_{3} e_{3}^{*}(x) e_{3}^{A} \quad\left[S^{*}\right]^{\infty}\left[\begin{array}{lll}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & \sigma_{2}
\end{array}\right]
$$

$$
\sigma_{i}^{+}>0
$$

there is a unique $v \in P_{\text {sym }}$ such that

$$
U^{2}=S
$$

Theorem 112 (Polar Decomposition Theorem) Let $\mathbf{F} \in \operatorname{Inv} \mathcal{V}$. Then \exists a unique pair of tensors $\mathbf{U}, \mathbf{V} \in \operatorname{Psym}$ and a unique $\overline{\mathrm{R} \in \text { Orth } \mathcal{V} \ni}$
pessince def tensors
Rotation $\Leftarrow \quad \mathrm{F}=\mathrm{RU}=\mathrm{VR}$.
$($ Lagrange $)$ Sa hic
Moreover, $\operatorname{det} \mathbf{R}=+1$ or $\operatorname{det} \mathbf{R}=-1$, depending as $\operatorname{det} \mathbf{F}>0$ or <0.

Use of this

$R_{\sim} U_{\sim}$
Ind rotate Mst stretch it $\vee R$
and Istrotate
stretch

Large deformation: decomposition is multiplicative Small deformation: decomposition is additive
large deformatici

$$
F=R J=V R
$$

$$
R=R_{3} R_{2} R_{1}
$$

small $\quad U=W_{1}+W_{2}+W_{3}$
change of lection by rotate.
small deformation.

Motivation for prot

$$
F=R U
$$

$$
\begin{aligned}
& \underbrace{F^{t} F}_{\|}=(R)^{t}(R U)=\underbrace{\left.U^{t} R^{t} R\right)}_{U} \underbrace{U}_{ \pm}=U I U=U^{2} \\
& P_{\text {sym }}(>0)
\end{aligned}
$$

(1) $V=\sqrt{F^{t} F}$ Idea what U is

Obuaisly $U \in$ Sym

$$
\begin{array}{ll}
R=\text { rotation? } & F=R U \Rightarrow R=F H^{-1} \\
R^{t} R=? & \left.(F)^{-1}\right)^{t} F U^{-1}=U^{U^{t}} \underbrace{}_{\left.U^{t} F^{t} F\right) U^{-1}}=U^{-1}\left(U^{2}\right) U^{-1}=I
\end{array}
$$

we proved $F=R U$

$$
\begin{aligned}
& V=F^{F_{F}} \\
& R \text { orthogonal }
\end{aligned}
$$

apprapoatersolids
second part $F=V R$

$$
V=F \begin{aligned}
F R^{-1} \rightarrow V=\sqrt{F F t} \\
\text { we can whew this }
\end{aligned}
$$

$$
F=R U=V R \Rightarrow \quad V=R \cup R^{+}
$$

V is sym?

$$
\begin{array}{ll}
? \quad x^{R} \cup R^{+} \cdot y=R^{+} x \cdot V^{+} y=\underbrace{t}_{V} R^{+} x \cdot R^{+} y \\
= & R \cup R^{-1} x \cdot y=y \cdot S_{y m}^{R U R^{-1} x}
\end{array}
$$

$x \cdot V_{y}=y \cdot V_{x} \Rightarrow V$ is sym

$$
\underset{\text { sitive }}{x \cdot V_{x}>0} \quad x \cdot V_{x}=x \cdot R^{\prime} R^{+} x=\underbrace{R^{+} x}_{y} \cdot U(\underbrace{R^{+} x}_{y^{2}})
$$

$$
=y \cdot V_{U_{\text {is }} P_{s y m}}>\sigma
$$

we have shown $V \in P_{\text {sym }}$
in addition we wand to show

$$
V^{2}=R \cup R_{I}^{+} B U R^{\dagger}=
$$

$$
F=R U
$$

In practice (next section) et $\mathrm{F}>0$ so a deformation is always decomposed to a pure stretch and a rotation.

Theorem 106 Let

$$
f\left(S_{i j}\right):=f\left(S_{11}, S_{22}, S_{33}, S_{12}, S_{13}, S_{23}\right)
$$

be a scalar invariant of $\mathbf{S} \in \operatorname{Sym}$ (that is $f\left(S_{i j}\right)=f\left(S_{i j}^{\prime}\right)$, where $S_{i j}$ and $S_{i j}^{\prime}$ are components of \mathbf{S} w.r.t. two frames X and $\left.X^{\prime}\right)$. Then \exists a unique real-valued function g of three real variables \ni

$$
f\left(S_{i j}\right)=g\left(I_{1}(\mathbf{S}), I_{2}(\mathbf{S}), I_{3}(\mathbf{S})\right)
$$

where $I_{i}(\mathbf{S})$ are the fundamental invariants of \mathbf{S}. Conversely, any function of this form is a scalar invariant of \mathbf{S}.

SE Sym express it in prinapal deredies

$$
\begin{aligned}
& {\left[Q^{8}\right]=\left[\begin{array}{ccc}
b_{1} & b_{2} & 0 \\
c_{1} & b_{2} & 0 \\
& c_{3} & b_{3}
\end{array}\right]} \\
& f(s)=f\left(b_{1}, b_{2}, b_{3}, c, c, c\right) \\
& =f_{0}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \\
& -\sigma^{3}+I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0
\end{aligned}
$$

Calibrate your model based on $I_{1} n \Psi_{-2}, I_{3}$
Tensor fields

These are tensor functions that depend on space (or spacetime for dynamic problems) coordinates

what is the duergence of atursor arak \bar{T}, magnaiti field
qo-kVI magnaifi field

$$
\dot{D}-\underbrace{\nabla \times 4}_{i}+{\underset{J}{J}}_{J}^{J}=0 \text { flam Moxmell's equs }
$$

electric curl choric current
flux
T is m's oder tensor field

$$
\begin{aligned}
& T=T_{i, \ldots i_{m}} e_{i}(x) \ldots e_{1 m} \\
& \underbrace{\nabla T}_{\text {grad or }}=T_{i, \ldots i_{m}, j} \cdot e_{i}(x) \ldots(x)^{e_{m}}(x)^{e}) \\
& T_{i, \ldots i m, j}=\frac{\partial T_{i, \ldots i_{m}}\left(x_{1},-x_{t}, x_{3}\right)}{X_{j}}
\end{aligned}
$$

Since the definition is based on coordinate components, we need to show that it's coordinate-independent Let's show this for a second order tensor

$$
T=T_{i j} e_{i}\left(x_{j}\right)
$$

$$
\begin{aligned}
& =\frac{\partial T_{m n}^{\prime}}{\partial x_{p}^{\prime}}=\frac{\partial\left(Q_{m i} Q_{n j} T_{i}\right)}{\partial x_{p}^{\prime}}=Q_{\text {min }} Q_{n j} \frac{\partial_{i n} T_{i j}^{\prime \prime}\left(x_{1}, x_{j}, x\right)}{\partial x_{p}^{\prime}}
\end{aligned}
$$

$$
=Q_{\text {mi }} Q_{n i} \frac{\overline{l i}_{j}}{\frac{\partial x_{k}}{\partial x_{k}} \frac{\bar{l}_{k}}{\partial x_{p}^{\prime}}} \quad \begin{aligned}
& x_{k}=Q_{p k} x_{p}^{\prime} \\
& x_{k}=Q_{r k}
\end{aligned}
$$

$$
=Q_{m i} \sigma_{n j} \frac{\partial Q_{r k} x_{r}^{\prime}}{\partial x_{p}^{\prime}} \frac{\partial T_{i}}{\partial x_{k}}=
$$

$Q_{m i} Q_{n j} Q_{r k} \frac{\left(\frac{\partial x_{r}^{\prime}}{\partial x_{p}^{\prime}}\right) \frac{\partial T_{i j}}{\partial x_{k}}}{\delta_{p p}}$
$=Q_{m i} Q_{n j} Q_{r k} \delta_{r p}(T)_{i, k}$ $\Rightarrow(\sqrt{T})_{m m p}=Q_{m i} Q_{n j} Q_{p k}(\nabla T)_{i j k}$
so ∇T is a $36 d$ order tengor
Interpetation of gradient:
$\Delta y=\left(\Delta y_{1}, \Delta y_{2}, \Delta y_{3}\right)$
change floralar
we wand $\Delta \phi=\phi(y+\Delta y)-\phi(y)_{-i,}$
$\left.\Delta \phi=\phi\left(y_{1}+\Delta y\right), y_{2}+\Delta y_{2} y_{3}+\Delta y_{3}\right)-\phi\left(y_{1}, y_{2}, y_{3}\right) \quad$ Taylar's expansiv-

$$
\begin{aligned}
& =\phi\left(y_{1}, y_{2}, y_{3}\right)+\left(\frac{\partial \phi}{\partial y_{1}} \Delta y_{1}+\frac{\partial \phi}{\partial y_{2}} \Delta y_{2}+\frac{\partial \phi}{\partial y_{3}} \Delta y_{3}\right) \\
& +\left(\frac{1}{2!} \frac{\partial \phi_{1}}{\partial y_{i} \partial y_{j}} \Delta y_{1} \Delta y_{j}\right)+\cdots-\phi\left(y_{1}, y_{2}, y_{3}\right)
\end{aligned}
$$

$\phi . \quad \nabla \phi-\phi_{n j} \cdot{ }^{\prime} \quad$ gradient

$$
\sqrt{\Delta q}=\operatorname{grad} q \Delta y
$$

For any tensor

Vector ficld

$$
\begin{aligned}
& V=V_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3} \\
& \left(\operatorname{grad} v=\left[\begin{array}{lll}
v_{1,1} & v_{1,2} & v_{1,3} \\
v_{2,1} & v_{2,2} & v_{2,3} \\
v_{3,1} & v_{3,2} & v_{3,3}
\end{array}\right]\right.
\end{aligned}
$$

Curvilinear coordinate systems

Example

$$
\text { Phat coordinate. } y=r \sin \theta=x_{1} \sin x_{2}
$$

$$
\begin{array}{ll}
\left.y_{1}=y_{1}\left(x_{1}\right) x_{2}\right) \\
y_{2}=y_{2}\left(x_{1}, x_{2}\right) \\
y_{1}=\tilde{r} \cos \theta=x_{1} \cos x_{2} \\
y=r \sin \theta=x_{1} \sin x_{2}
\end{array} \quad i_{2} \quad e_{2}^{\left(e_{\theta}^{\prime}\right)}
$$

Lxample

$$
y_{1}=r \cos \theta=x_{1} \sim x_{2}
$$

Polar coordmate $y_{2}=r \sin \theta=x_{1} \sin x_{2}$ systien
x_{1}, x_{2} are curtiliear condinate sysum
How to detive er ea

Rurte-force calcutatio of giod in polar coortmate eQ $P d P$

$$
d e_{r}=e_{\theta} d \theta
$$

$$
\text { Alse } \left.\quad \left\lvert\, \begin{array}{l}
d e r=e \\
d e_{e}=-e_{r} d \theta
\end{array}\right.\right]
$$

$$
\begin{aligned}
& P=r e r \\
& \vec{P}=d(r e r)= \\
& \text { (dr)er + r(der) } \\
& C_{y}=\cos \theta+\sin \theta i_{2}{ }^{\prime} \\
& d e_{r}=(\underbrace{\left(-S_{m} \theta \theta_{i}+C \theta_{i}\right.}_{e \theta}) d \theta \\
& d P=\underbrace{(d r) e r+(r d \theta)} \\
& ? \\
& d \phi(r, \theta)=\frac{\partial \phi}{\partial r} d r+\frac{\partial \phi}{\partial \theta} d \theta \\
& \left.d \phi(r, \theta)=\frac{\partial \phi}{\partial r} d r+\frac{\partial \phi}{r} \frac{\partial}{\partial \theta}(r d \theta)\right) \\
& d T=\underbrace{d P_{r}}_{d r} e_{r}+\underbrace{d P_{\theta}}_{r d \theta} e_{\theta} \\
& \longrightarrow \\
& d \phi=\left[\begin{array}{ll}
(\nabla \phi)_{r} & (\nabla \phi)_{\theta}
\end{array}\right]\left[\begin{array}{l}
d P)_{r} \\
d P_{\theta}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial \phi}{\partial r} & \frac{1}{r} \frac{\partial \theta}{\partial \theta}
\end{array}\right]\left[\begin{array}{l}
d r \\
r d \theta
\end{array}\right] \\
& \rightarrow \left\lvert\, \overline{V \rho}=\left[\begin{array}{lll}
\frac{\partial \phi}{\partial r} & \frac{1}{\gamma} \frac{\partial \phi}{\partial \theta}
\end{array}\right]\right.
\end{aligned}
$$

