Section 2:

Kinematics

Definition 72 Let $\overset{o}{\mathcal{B}}$ be an open bounded, regular region of a Euclidean point space \mathcal{E} . A deformation **f** is a mapping (function) of points in $\overset{0}{\mathcal{B}}$ onto another open region of ${\mathcal E}$ with the properties

1. **f** is one-to-one; i.e., $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{y}) \Rightarrow \mathbf{x} = \mathbf{y} \ \forall \ \mathbf{x}, \mathbf{y} \in \overset{0}{\mathcal{B}}$

2. $\mathbf{f} \in C^2(\overset{0}{\mathcal{B}}), \ \mathbf{f}^{-1} \in C^2(\mathbf{f}(\overset{0}{\mathcal{B}})),$

3. det $\nabla \mathbf{f}(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \overset{0}{\mathcal{B}}$.

The notation $f(\overset{0}{\mathcal{B}})$ refers to the mapped region, which is called the image

Continuum Page 1

= f(X)

Continuum Page 2

Continuum Page 4

Remark 28 The requirement of well-behaved first partial derivatives supports the unambiguous extension of f to the boundary $\partial \mathcal{B}$. Inductively, the trace operator "evaluates" a function $f \in C^M(\overset{0}{\mathcal{B}})$ and its partial derivatives up to order M - 1 on $\partial \mathcal{B}$. Specifically, for any deformation $\mathbf{f} \in C^2(\overset{0}{\mathcal{B}})$, the trace allows us to "evaluate" the components f_i and the partial derivatives $f_{i,j}$ on $\partial \mathcal{B}$. This is sufficient for a complete kinematic description of the closed body \mathcal{B} . These arguments are associated with the following Extension Theorem.

- Next we are going to cover have line segments (length and angle between them), surfaces, and volumes change because of deformation
- Rigid motion

Definition of displacement: VCXI = YCXI - X New position or yound position XNY - 1

Rigid body motion:

Definition 78: a deformation f is rigid iff it preserves distance between all pairs of points

Rigid motions are composed of translations and rotations.

Why?

Theorem 119: Let f be a rigid deformation and O the origin. WE define the relative displacement w.r.t.) as

$$S(x) = F(x) - f(0)$$
corresponds to liansled on
$$C(x) = F(x) - f(0)$$

$$S(x) = 2x + y$$

$$S(x) =$$

And we need to show it's a linear operator (skip) From theorem 78 for a linear 2nd order tensor that preserves magnitude, distance, or angles -> was an orthogonal tensor

 $Y(x) = f(0) + \frac{Q^{n}}{f(x)}$

O()