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Kinematics.

0
Definition 72 Let B be un open/bounded, reqular region of a Euclidean
A - 7
&

0
point space €. A deformation f is a mapping (function) of points in B onto

another open reqion of E with the properties
L 7

. 0
1. f is one-to-one; re., f(X)=f(y) = x=y VX,y €B,

0
), £-1 € C3(f(B)),

3. detVf(x) >0V x Elll’ \/& — g QX\

()
The notation f(B) refers to the mapped region, which is called the image
0
of the set B under f.

What is a deformation?
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Remark 28 The requireme nt uf well-behaved ﬁr',x[ pul'lm/ derivatives sup-
ports the unambiguous extension of f to the boundary OB. Inductively, the
0
trace operator “¢ valuates” a function [ € ("”(B) and its /n(u‘hu[ derivatives
o
up to order M — 1 on OB. Specifically, for any deformation f € C*(B3), the
trace allows us to “evaluate” the components fi and the pu/'!/u/ derivatives
fi; on OB. This is sufficient for a complete kinematic description of the

closed body B. These arguments are associated with the following Ertension
Theorem.

Property 3:

- Next we are going to cover have line segments (length and angle between them), surfaces, and volumes change because of deformation
- Rigid motion

Definition of displacement: U()\ \ — \,\/B QX\ o X
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Rigid body motion:

Definition 78: a deformation f is rigid iff it preserves distance between all pairs of points
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Rigid motions are composed of translations and rotations
Why?

Theorem 119: Let f be a rigid deformation and O the origin. WE define
the relative displacement w.r.t. ) as

¢ (x) = b %@L? wroponts Lo [enddion
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And we need to show it's a linear operator (skip)
From theorem 78 for a linear 2nd order tensor that preserves
magnitude, distance, or angles -> was an orthogonal tensor
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