Monday, October 21, 2019 11:44 AM

Continue from last time (U was obtained), now we want to find the rotation part of deformation:

Continuum Page 1

Similar to
$$V_{12} = 9040$$
 $V_{11} = 1.0448$ $B_{22} = 0.8172$ $D_{12} = 52.16$

1) Eigenvalues of U and V are equal! (same can be said about C and B)

Continuum Page 2

Infinitesimal theory for strain

$$H = F I = \begin{bmatrix} -0.05 & .125 \\ -.0063 & .0078 \end{bmatrix} \rightarrow \begin{bmatrix} -0.0574 \\ -.0078 \end{bmatrix}$$

$$E = SymHz H + H = \begin{bmatrix} -0.057 & .0656 \\ -.0078 \end{bmatrix} W = asymHz + \frac{141}{2} = \begin{bmatrix} 0 & 0.0594 \\ -.0078 \end{bmatrix}$$

Principal strains and axes:

[eigv, eigd, eigvalues, theta1, theta2, theta1D] = eigSym2([-0.05 0.0656; 0.0656 -.0078])

eigv =

The angles (53.91 and 55.65) and values of infinitesimal and finite deformation theories are pretty close!

$$N = \frac{E_{11} + E_{22}}{2} = -00289$$

$$N = \frac{E_{11} - E_{22}}{2} = -00211$$

$$Radius = \sqrt{N' + 012} = 0.06'89$$

$$E_{1}^{*} = A + Radius = 0.04$$

$$E_{2}^{*} = A - Radius = -0.0978$$

$$V^{2E_{11}}$$

$$V^{2E_{11}}$$

$$V^{2E_{11}}$$

1

Initinite mal (otadion

maldus figure above

Mitinitesmal (otal con $W = \begin{bmatrix} 0 (.594) \\ -594 \\ 0 \end{bmatrix}$ what is Qu (infinitemal course It 0 = 3D rotalion) ? Jel de

yzf(X) Ilanat

Motion:

 $\begin{array}{l} \textbf{Definition 87} \ A \ \text{motion of } a \ body \ is \ a \ family \ of \ deformations \ ordered \ by \ a \\ single \ real \ parameter \ called \ time, \ denoted \ t. \ We \ introduce \ a \ reference \ time \ t_0 \\ associated \ with \ the \ undeformed \ state \ of \ the \ body.^{16} \ Then \ a \ motion \ is \ denoted \ by \\ \left\{\mathbf{f}(\cdot,t)\right\}, t \in [t_0,\infty), \end{array}$

where

$\mathbf{y} = \mathbf{f}(\mathbf{x}, t)$

 \mathcal{A}

is the position vector at time t of the material point identified by the position vector \mathbf{x} in the undeformed state at time \mathbf{t}_0 . A motion inherits all the required properties of a deformation, except that the numbered properties in Definition 72 are superceded by the requirements

1.
$$f(\mathbf{x}, t_0) = \mathbf{x}$$
:
2. $f \in C^2(\overset{0}{\mathcal{B}} \times [t_0, \infty), \mathcal{V})$
(why we don't need
the S

J

= t(X, -

 t_1

Theorem 143 Let $\{f(\cdot, t)\}$ be a motion. Then

$$J(\mathbf{x},t) > 0 \text{ on } \overset{0}{\mathcal{B}} \times [t_0,\infty).$$

Proof. Our definition of a motion requires that for any fixed value of t, the mapping $\mathbf{f}(\cdot,t)$ is a deformation on $\stackrel{0}{\mathcal{B}}$. Therefore, $\mathbf{f}(\cdot,t)$ is invertible \Rightarrow its Jacobian determinant $J(\mathbf{x},t) \neq 0$ on $\overset{0}{\mathcal{B}} \times [t_0,\infty)$. Since $J(\mathbf{x},t)$ must be a continuous function of both position and time, the requirement $J(\mathbf{x},t) \neq 0$ on $\overset{0}{\mathcal{B}} \times [t_0, \infty) \Rightarrow$ either $J(\mathbf{x}, t) > 0$ or $J(\mathbf{x}, t) < 0$ everywhere on $\overset{0}{\mathcal{B}} \times [t_0, \infty)$. At $t = t_0$ we have

 $\mathbf{f}(\mathbf{x}, t_0) = \mathbf{x} \Rightarrow f_{i,j}(\mathbf{x}, t_0) = \delta_{ij}.$

Thus,

$$J(\mathbf{x}, t_0) = \det \mathbf{F}(\mathbf{x}, t_0)$$

= det $[f_{i,j}(\mathbf{x}, t_0)]$
= det $[\delta_{ij}]$
= 1.

 $\therefore J(\mathbf{x},t) > 0$ everywhere on $\overset{0}{\mathcal{B}} \times [t_0,\infty)$.