Continue from last time (U was obtained), now we want to find the rotation part of deformation:

$$
\begin{aligned}
& R= {\left[\begin{array}{l|}
R e_{1}
\end{array}\left|R e_{2}\right|\right.} \\
&= {\left[\begin{array}{c|c|}
C & -s \\
s & c
\end{array}\right] } \\
& c=C A \\
& s=s-\theta
\end{aligned}
$$

in degres

1
,

$$
Q_{R}=-3 \cdot 4.488^{\circ}
$$

R

Eulenain ven point

$$
\begin{aligned}
& F=V R \\
& V=\sqrt{B}
\end{aligned}
$$

$d y \rightarrow d x$ is where these are used

$$
B=F F^{t}
$$

Similar to C we can calculate B \& its expressioicin its principal axes.

Simitar to \checkmark we Min calculate
principal axes.

1) Eigenvalues of U and V are equal! (same can be said about C and B)

$$
\theta_{V_{i}}=\theta_{V_{i}}+\theta_{R}
$$

primapal axes
of V are panapal axes of Uratated Physical explanation

Mathematical explanation:

$$
R \cup=V R \Rightarrow R \cup R^{t}=V
$$

$\overrightarrow{V_{i}}, \lambda_{i}$ are eigen vector \&s gen valve $\# i$ of U

$$
\begin{aligned}
& U v_{i}=\lambda_{i} v_{i}
\end{aligned}
$$

HW6: well see

$$
\underbrace{I-V^{-1}}_{\text {Bract }} \& C^{8}=\underbrace{\frac{1}{2}\left(1-B^{-1}\right)}_{\text {applobicate }}=\frac{1}{2}\left(I-V^{-2}\right)
$$

are as lo stains $d y \rightarrow d x$

$$
\begin{aligned}
& \lfloor L-v J=L \quad-0.006)
\end{aligned}
$$

very close to U-boud stoi valuen

Infinitesimal theory for strain

$$
\begin{aligned}
& H=F \text { I }=\left[\begin{array}{cc}
-0.05 & .125 \\
-.0063 & -.0078
\end{array}\right] \rightarrow \\
& E=\operatorname{Symitc} \frac{14+A^{t}}{2}=\left[\begin{array}{cc}
-0.5 & 0.0656 \\
\text { sym } & -.0078
\end{array}\right] \quad W=\text { asym } H_{2} \frac{14+1 t^{t}}{2}=\left(\begin{array}{cc}
0 & 0.0594 \\
-0.054 t_{0}
\end{array}\right]
\end{aligned}
$$

Principal strains and axes:
[eigv, eigd, eigvalues, theta1, theta2, theta1D] = eigSym2([-0.05 0.0656; 0.0656-.0078])
eigv =
$\begin{array}{ll}-0.5890 & -0.8081 \\ -0.8081 & 0.5890\end{array}$

The angles (53.91 and 55.65) and values of infinitesimal and finite deformation theories are pretty close!

x axis n anal $=-0.05$ shat 00656
yakis normal $=-.0078$ shear

$$
\nabla_{107} 81=-2 e_{E}^{\prime} \rightarrow
$$

inifinitesmal rotal con
malcus figure above

$$
\begin{aligned}
& A=\frac{E_{11}+E_{22}}{2}=\ldots .0289 \\
& \Delta=\frac{E_{11}-E_{22}}{2}=-.02 \| \\
& \text { Radius }=\sqrt{\Lambda^{2}+\sigma_{12}^{2}}=0.06 .89 \\
& E_{1}^{*}=A+\operatorname{Radius}=0.04 \\
& E_{e}^{\infty}=A-R a d u s=-0.0978
\end{aligned}
$$

initinitesmal rotalcon

fotator veclor

\qquad We have already compared strains in each theory's corresponding principal axes.

- Normal strains were very close
- The rotation parts of deformation were very close

Shear strains are zero in principal axes for both theories and match

$$
\begin{aligned}
& e\left(x_{1} e_{1}\right)=\sqrt{C_{11}}-1=\underline{-0.05} \\
& e\left(x_{\left.r e_{2}\right)}=\sqrt{c_{22}}-1=\underline{\underline{3.0517 e-5} \approx 0} \quad\right. \text { finite } \\
& \text { sheer } \\
& \sin \gamma_{12}=\frac{c_{12}}{\sqrt{c_{11}} \sqrt{c_{22}}} \Rightarrow \quad \gamma_{12}=0.1319 \rightarrow \text { degrees } \\
& \\
&
\end{aligned}
$$

FYI: Read theorem 139 (Cesaro Line Integral representation)
idea

$3=6-3$ comp meeded alwo ys posible
21

$$
\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \xrightarrow{?}=\left[\begin{array}{ll}
U_{31} & \frac{U_{122}+U_{21}}{2} \\
U_{22}
\end{array}\right]
$$

I compadibluy y eqn neded

$$
\left(\begin{array}{l}
Z_{191}=U_{11} \\
E_{2,2}=U_{2,2} \\
E_{1,2}=\frac{1}{2}\left(U_{1,2}+U_{21}\right)
\end{array}\right) \begin{aligned}
& 922 \\
& 911 \\
& 912
\end{aligned}
$$

$$
\underbrace{E_{1,122}+E_{2,211}-2 E_{12, n}}_{1,11}=0
$$

compatible (good.) sicin field in $2 V$ most soding (\rightarrow)
reter to nodes to obtoin U from
cambe used to propse E Pilds for complicaled problams (eg crack tip freide). All need to check is satisfodue of A beravse we slart from E.

$$
\begin{aligned}
& \text { at } t_{0}-F=1 \\
& \operatorname{det} F\left(t=t_{0}\right)=1
\end{aligned}
$$

proofon why def $f>0$?

Theorem $143 \operatorname{Let}\{\mathbf{f}(\cdot, t)\}$ be a motion. Then

$$
J(\mathbf{x}, t)>0 \text { on } \stackrel{9}{\mathcal{B}} \times\left[t_{0}, \infty\right)
$$

Proof. Our definition of a motion requires that for any fixed value of t, the mapping $\mathbf{f}(\cdot, t)$ is a deformation on \mathcal{B}. Therefore, $\mathbf{f}(\cdot, t)$ is invertible \Rightarrow its Jacobian determinant $J(\mathbf{x}, t) \neq 0$ on $\stackrel{0}{\mathcal{B}} \times\left[t_{0}, \infty\right)$. Since $J(\mathbf{x}, t)$ must be a continuous function of both position and time, the requirement $J(\mathrm{x}, t) \neq 0$ on $\stackrel{0}{\mathcal{B}} \times\left[t_{0}, \infty\right) \Rightarrow$ either $J(\mathbf{x}, t)>0$ or $J(\mathbf{x}, t)<0$ everywhere on $\stackrel{0}{\mathcal{B}} \times\left[t_{0}, \infty\right)$. At $t=t_{0}$ we have

$$
\mathbf{f}\left(\mathbf{x}, t_{0}\right)=\mathbf{x} \Rightarrow f_{i, j}\left(\mathbf{x}, t_{0}\right)=\delta_{i j}
$$

Thus,

$$
\begin{aligned}
J\left(\mathbf{x}, t_{0}\right) & =\operatorname{det} \mathbf{F}\left(\mathbf{x}, t_{0}\right) \\
& =\operatorname{det}\left[f_{i, j}\left(\mathbf{x}, t_{0}\right)\right] \\
& =\operatorname{det}\left[\delta_{i j}\right] \\
& =1
\end{aligned}
$$

$\therefore J(\mathrm{x}, t)>0$ everywhere on $\stackrel{0}{\mathcal{B}} \times\left[t_{0}, \infty\right)$.

