Definition 89: Trajectory of a body under motion f(.,t) is the set of ordered pairs

Definitions of velocity and acceleration (Def 90)

Continuum Page 1

X, defining rate (time der Krathe) of knorff, M_ C () ~yS $= \frac{T(y(x_{1}+z_{1})) - T(y(x_{1}+z_{1}))}{t_{1} - t_{2} - t_{2}}$ N=ytati y=y.(x,A 2,t $= \frac{PT(X_{2}+)}{K_{1}}$ Lagrangia time durkative hat Pluid - small ł, diffusia. Vet fluid (γ, γ) 2 (lini fixed observation window we're not following the particle Euleman time derivative Relation between $\frac{1}{2} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}$ DT X-fixed Ot 4- fixed $\chi T(y,t)$ DT(y, z)

$$\frac{DT(y_{3}t)}{Dt} = \frac{\partial T(y_{3}t)}{\partial t} + \left(\frac{\partial T}{\partial y_{1}}\right) + \frac{\partial Y_{1}}{\partial t} +$$

U

) 1 Int) x-fixe grad T / y-fixed Thad T(x+) |x-fixed VyT Hundir T(y,t) $\left(\times \right)$ = thace (grad] = time (Griad T) consider vector (CO(X, t), W(Y, t)) ix-fixed Jw. (yot) $(Gradw)_{ij} = \frac{\partial w_{i}}{\partial X_{j}}$ $\frac{\partial \hat{W}_{i}(y, t)}{\partial y_{k}} \left(\frac{\partial y_{k}}{\partial x_{j}} \right)$ = (graddik Fri FK (grad w), k Gradu = gradu. F = gradu = Gradu.F This holds have for any order tensor (Grad T(y,1)), ining = d Timin = d Timin byk 9 rad Trink FK

-

* Take of J
Take of J

$$DJ = P$$

 $DJ = P$
 $DJ = 2P$
 $U = J - 1$
 $Volumetric stain
 $E_V = J - 1$
 $Volumetric stain
 $E_V = J - 1$
 $Volumetric stain
 $E_{V-1} = E_{V-1} + E_{V-2} + O(c^{*})$
 HW
 $DJ = D det F$
 $DV = D det F$
 $D$$$$

Summary Lagrangini Edonani

$$V(x,t) = \frac{Dy(x,t)}{DT} = \frac{Du(x,t)}{DT}$$
 $V(x,t)$
 $Q(x,t) = \frac{Dv(x,t)}{DT} = \frac{D^2u(x,t)}{DT} = \frac{D^2u(x,t)}{DT}$
 $\frac{DT}{DT} = \frac{DT}{T} + gradT \hat{v}$
 $\overline{VT} = GradT = grad\tilde{T} + f$
 $\frac{DT}{T} = \frac{DT}{T}$

^

Force must be zero (because we deal with constant velocity).

The problem is that Newton's law is for a fixed material blub. We basically follow material and need to take Lagrangian time derivate

From Abeyaratne:

We say that Ω is an *extensive physical property* of the body if there is a function $\Omega(\cdot, t; \chi)$ defined on the set of all parts \mathcal{P} of \mathcal{B} which is such that

(i)

$$\Omega(\mathcal{P}_1 \cup \mathcal{P}_2, t; \chi) \stackrel{\prime}{=} \Omega(\mathcal{P}_1, t; \chi) + \Omega(\mathcal{P}_2, t; \chi)$$
(1.30)

F

Y

for all arbitrary disjoint parts \mathcal{P}_1 and \mathcal{P}_2 (which simply states that the value of the property Ω associated with two disjoint parts is the sum of the individual values for each of those parts), and

$$\Omega(\mathcal{P}, t; \chi) \to 0$$
 as the volume of $\chi(\mathcal{P}, t) \to 0.$ (1.31)

Under these circumstance there exists a density $\omega(p, t; \chi)$ such that

Volumetric volue
$$\Omega(\mathcal{P},t;\chi) = \int_{\mathcal{P}} \omega(p,t;\chi) \, dp. \tag{1.32}$$

$$\prod_{i=1}^{n} (p_i,t;\chi) = \int_{\mathcal{P}} \omega(p,t;\chi) \, dp. \tag{1.32}$$

Thus, we have the property $\Omega(\mathcal{P}, t; \chi)$ associated with parts \mathcal{P} of the body and its density $\omega(p, t; \chi)$ associated with particles p of the body, e.g. the energy of \mathcal{P} and the energy density at p.

Balance /amz:) f d V D D +(Smol forces) R +F fd balance lans we deal with $\omega(y,t) dV_y$ L L need to learn how to calculate R tr