Kronecker's delta:

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

$$
\delta=\left[\begin{array}{lll}
1 & G & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

So, it's basically the identity matrix

Some properties of δ.

$$
\begin{aligned}
& \text { 1. } \delta_{i i}=1 \quad \text { no summation, } \\
& 2 \cdot \delta_{i i}=\delta_{14}+\delta_{22}+\delta_{33}=3 \\
& \text { 3. } \begin{aligned}
S_{i j} b_{j}= & \delta_{i 1} b_{1}+\delta_{i 2} b_{2}+\delta_{i 3} b_{3}
\end{aligned}=b_{i}, ~ \begin{aligned}
1 & \delta_{11}+\delta_{12} b_{2}+\delta_{13} b_{3}
\end{aligned}=b_{1} . \\
& \begin{array}{ccc}
\begin{array}{l}
i \\
i=2 \\
i r 3 \\
i
\end{array} \rightarrow \quad b_{3}
\end{array} \\
& \text { Mani form says } \vec{b}=\overrightarrow{=} \vec{b}_{b} \\
& \delta_{i j i} b_{i}=b_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{\text {(ij }} C_{\text {klog mp }}=C_{k l j \text { mair gudy }} \\
& \delta_{k j} C_{k l j g m p}=C_{k l i \operatorname{smp}} \\
& \text { repuet will } \\
& c=A a+5 a \\
& c_{i}=A_{i j} a_{j}+5 a_{i} \longrightarrow a_{j} \\
& a_{j}={\underset{S}{j}}_{?}^{S_{i}} a_{i} \\
& =A_{i j} a_{j}+5\left(x_{i j}^{-} a_{j}\right. \\
& c_{i}=\left(A_{i}+5 \delta_{i j}\right) a_{j} \quad c=(A+5 \tau) b
\end{aligned}
$$

Permutation or Alternating Symbol

$$
\rightarrow 27 \text { combinations }
$$

Examples:

$$
\begin{array}{ll}
\epsilon_{112}=0 & \epsilon_{111}=0 \\
\epsilon_{122}=0 & E_{12}=0
\end{array}
$$

$$
\text { Only } 6 \text { remaing nanzeros }
$$

permatratrs

Another way to get these 6 values is to count how many permutations are needed relative to
Gits

Use of alternating symbol

- Determinant of a matrix $\operatorname{det} A$
- Inverse of a matrix
- Cross product, curl

$$
\vec{a} \times \vec{b}
$$

Determinant

$$
\begin{aligned}
& A=\left[A_{11}\right] \quad \begin{array}{ll}
A\left(A_{12}\right) \\
A_{21} & A_{22}
\end{array} \\
& \operatorname{det} A_{2} A_{11} \\
& \operatorname{det} A= A_{11} \operatorname{det}\left(A_{22}\right)(-1)^{1+1}+(-1)^{1+2} A_{12} \operatorname{det} A_{21} \\
& A_{11} A_{22}-A_{12} A_{21} \quad \operatorname{de}\left[\begin{array}{ll}
a & b \\
d
\end{array}\right] \cdot d b-b c
\end{aligned}
$$

Cain $\operatorname{det} A=E_{i j k} A_{1 i} A_{i j} A_{3 k}$

$$
\text { eg terns } A_{11} A_{21} A_{32}
$$

$$
\begin{aligned}
& A=\underbrace{\left.\begin{array}{ll}
A_{1}
\end{array}\right]}_{\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}} \\
& \operatorname{det} A=\left(\begin{array}{lll}
(-1)^{1+1} & A_{11} & \left.\operatorname{det}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]+(-1)^{1+2} A_{12} \operatorname{det}\left[\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{33}
\end{array}\right)\right]\left(\begin{array}{lll}
1+3 & A_{32}
\end{array}\right]
\end{array}\right. \\
& +(-1)^{1+3} \quad A_{13} \operatorname{det}\left(\begin{array}{ll}
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right) \\
& \operatorname{det} A=A_{11} A_{22} A_{33}-A_{11} A_{23} A_{32}-A_{12} A_{21} A_{33}+A_{12} A_{23} A_{31} \\
& +A_{13} A_{21} A_{32}-A_{13} A_{22} A_{31}
\end{aligned}
$$

Show for any two indices the same, you'll get zero on the RHS

$$
\epsilon_{12} \operatorname{der} A_{2} \epsilon_{i j k} A_{i 1} A_{j 1} A_{k p}
$$

$$
=-e_{j i k} A_{j i} A_{1 i} A_{k p}
$$

Fo you sha' it for wo cares its fine

Some properties of determinant

$$
A_{2}\left(\left.\begin{array}{ccc}
A_{11} & A_{12} & A_{33} \\
A_{u} & A_{12} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array} \right\rvert\,, B_{i}-\ldots .\right.
$$

$$
\begin{aligned}
& -C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{35}
\end{array}\right] \quad \operatorname{dt} C=\gamma \\
& \begin{aligned}
& \operatorname{dt} C= \epsilon_{i j k} C_{1 i} C_{i j} G_{3 k} \\
& \epsilon_{j k} \quad 0 \quad A_{i j} \\
& A_{3 k}=0
\end{aligned} \\
& C=\left[\begin{array}{lll}
A_{11} & A_{22} & A_{23} \\
A_{11} & A_{12} & A_{13} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \quad A_{0}\left[\begin{array}{l}
M_{A_{2}}^{A} \\
r A_{3}
\end{array}\right)+5 \\
& \operatorname{det} C=-1 \operatorname{det} A
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{wre} C & =E_{i j k} C_{1,} i\left(C_{2}\right) \cdot C_{3 k} \\
& =E_{i j k}^{i} A_{2 i} A_{3 k} \\
& =(-1) E_{j i k} A_{1 j} A_{2 i} A_{3 k}=\operatorname{det} A
\end{aligned}
$$

$$
C_{2}\left[\begin{array}{ccc}
\lambda A_{11} & \lambda A_{12} & \lambda A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

$\operatorname{det} C=\lambda \operatorname{det} A$
proit

$$
d \mathrm{dC}=\mathrm{Eyj}^{(}
$$

$$
\begin{aligned}
& C=\lambda A \\
& \operatorname{det} C=\lambda^{n} \operatorname{det} A
\end{aligned}
$$

$$
\begin{aligned}
& \left.=E_{i j k}\left(\lambda A_{1 i}\right) A_{2 j} A_{3 k}\right) \\
& =\lambda\left[E \tilde{y} k A_{i} A_{2 j} A_{3 k}\right)=\lambda \operatorname{det} A
\end{aligned}
$$

for $\underset{\substack{n \times n \\ \text { mative }}}{ }$

$$
\begin{aligned}
& d t C=E_{5 k}\left(G_{i j} C_{i j} C_{3 k}\right. \\
& C=A_{T} B \\
& \operatorname{det} C \neq \operatorname{det} A+\operatorname{de} B \\
& C=A B \quad \operatorname{det} C \equiv \operatorname{det} A \operatorname{det} B \quad H W
\end{aligned}
$$

$$
\begin{aligned}
& \text { scalar } \\
& Q=x^{\top} A x \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.a=x^{\top}\right)_{i}(\underset{\sim}{A x})_{i} \\
& =x_{i} \quad A_{i j} \tilde{j}_{j} \\
& Q=x_{i} A_{i j} x_{j} \\
& \frac{\partial Q}{\partial x_{i}}=\frac{\partial\left(x_{i} A_{i j} x_{j}\right)}{\partial x_{i}} X^{3 \text { repeated iss }} \\
& =A_{i j} x j \times \geqslant \delta_{i k} \\
& \frac{\partial Q}{\partial x_{k}}=\frac{\partial x_{i} A_{i j}^{\sim} x_{j}}{\partial x_{k}}=\frac{\partial x_{i}}{\partial x_{k}} A_{i j}^{n} x_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial w}{\partial x_{k}}=\frac{\partial a_{1}(x) \cdots}{\partial x_{k}}=\left(\frac{v x_{i}}{\partial x_{k}}\right) A_{i j} x_{j} \\
& +x e^{i} \partial A_{i n}^{0} x_{j}^{0} \\
& +n_{i} A_{y} \frac{\partial x x^{2}}{\partial y_{k}} \\
& \begin{array}{l}
=\left(A_{i}^{(0)} x_{j}\right. \\
+x_{i} A_{j}^{a} \delta_{j}
\end{array} \\
& =A_{k j} x_{j} \\
& +x_{i=\text { chavge } i \rightarrow j}^{i A_{i k}} \frac{\left(A_{k j}+A_{j k}\right) x_{j}}{\frac{\partial Q}{\partial x_{k}}=\left(A_{k j}+A_{j k}\right) x_{j}} \\
& A=\left[\begin{array}{lll}
A_{1} & A_{12} & A_{3} 3 \\
\lambda_{3} & & \\
& & A_{32}
\end{array}\right] \quad A^{T}=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{331} \\
A_{12} & &
\end{array}\right. \\
& \frac{A_{4} A^{\top}}{2}=\left[\begin{array}{ccc}
A_{11} & \frac{A_{12}+A_{21}}{2} & 1,3 \\
A_{\frac{124}{} A_{2}}^{2} & A_{22} & 2,3 \\
& & A_{32}
\end{array}\right] \\
& \frac{\partial Q}{\partial x_{k}}=2\left(\frac{A+A^{T}}{2}\right)_{i j} x_{j} \\
& \operatorname{sym} A=\frac{A+A^{+}}{2} \\
& \text { if } A \text { is } \operatorname{sym}\left(A=A^{\top}\right) \\
& \operatorname{Jog} x=2 A x
\end{aligned}
$$

