Vector spaces

Vector PQ is identified by 3 things:

1. Length of $P Q:|P Q|$
2. Direction of $P Q: e_{P Q}$ Of $4 m$
3. Sometimes we also care about base point P (often we don't care about this).
If we differentiate vectors by their base point as well, they are called bound vectors
hon-bound rect s

$$
p^{\prime}
$$

$e_{P Q}$ is of length' ${ }^{x}$,
$\&$ direction of $P Q$

$$
e v=\frac{\vec{V}}{|v|}
$$

Addetian

$$
\vec{\omega}+\vec{v}=\vec{V}+\vec{w}
$$

Scalar product

$$
\begin{aligned}
& |\lambda \hat{v}|=|\lambda|| | y \\
& e \vec{v}= \begin{cases}e v & \lambda>0 \\
-e v & \lambda<0 \\
= & \lambda=0\end{cases}
\end{aligned}
$$

$$
a-b=a+(-b)
$$

$$
a-b=a+(-b)
$$

Propertios of vectars
A) $(A 1) \underline{a+b}=b+a, ~$ commutative Addition
need
42) $a+(b+c)=(\vec{a}+\vec{b})+\vec{c} \quad$ associative
be
(AB) $a+0=0+a=a$
for avy yedrspoce
\longrightarrow neutod

Vector space is an
nember cur.t addaica Proved

$$
\begin{aligned}
& \forall a \exists(-a) \ni \\
& \longleftarrow a+(-a) 2(-a)+a=0
\end{aligned}
$$

Abeliai group w.r.t + it's not added as
B) SCaldor prapedtio, $\lambda, \mu \in \mathbb{R}, a \not a$ Vectors
an aydour op redor pace
B1) $(\mu \lambda) a=\mu(\lambda a) \quad s$ calar product property
B2) $(\lambda+\mu) a=\lambda a+\mu 1 a \quad$ distribstive cirh respact to scolar adda.:
B3) $\lambda(a+b)=\lambda a+\lambda b \geqslant \%$ vector abdtaion
Pst) $1 \cdot a=a$

Inner product of vectors \quad if $^{i} a, 0$ or $b=0$ abs z

$$
\vec{a} \cdot \vec{b}=|a||b| \cos \theta_{a} b
$$

good dodintien
for amy coordinde system
(blamed label) we got the same value

We use inner product to compute the project of b to a or a to b. In general we use inner product for projection operators.

$$
\begin{aligned}
p_{a}^{b} & =|b| G_{s} \theta_{a, b} \\
& =\frac{|a| b \mid C_{0, b}}{|a|} \\
& =\frac{a \cdot b}{|a|}
\end{aligned}
$$

of lengf poo

$$
\begin{aligned}
& \vec{P}_{a}^{b}=p_{a}^{b} e_{a}=\frac{a, b}{|a|} \cdot \frac{a}{|a|} \\
& \overrightarrow{p^{b}}=\left(\frac{a \cdot b}{a \cdot a}\right) a=\left(\frac{a \cdot b}{|a|^{2}}\right) a
\end{aligned}
$$

arrentadis a

A few examples:
1)

$$
\begin{aligned}
& \begin{array}{l}
\theta \cdot b \\
a \cdot b \\
|a||b| \\
\cos \theta_{0, b} \\
\theta_{0}
\end{array}=|a||b|
\end{aligned}
$$

a is aligned with b

$a \cdot b$ gets smaller
2) $0 \cdot \frac{\pi}{2}$

$a \cdot b \cdot(a \| l)^{c_{2}} \underbrace{-1}_{0}=0$

3) $Q \rightarrow \pi$

$$
a b-|a|(b) \underset{-1}{\infty \pi}=|a||b|
$$

$$
\frac{a \cdot b}{|a||b|} \operatorname{aib}=0 \underbrace{20}_{0}
$$

Properties of inner product:

1) $a \cdot b=b \cdot a$
2) $a \cdot(d b)=\lambda(a . b)$ sear property
3) $a \cdot(b+c)=a \cdot b+a \cdot c$
distributive dish respect to vector addivi
(3)

$$
\begin{aligned}
\frac{a \cdot(b+c)}{|a|} & =\frac{a \cdot b}{|a|}+\frac{a \cdot c}{|a|} \\
& \rightarrow \text { we get property 3 }
\end{aligned}
$$

Note about HW1
5. (20 Points) Show that the components of the inverse of a matrix satisfy,
5. (20 Points) Show that the components of the inverse of a matrix satisfy,

(6)

