Continue: Orthonormal basis in an inner product vector space:

$$
\begin{aligned}
& e_{1} e_{1}=1 \quad e_{1} \cdot e_{2}=0 \\
& e_{q} \cdot e^{\prime} 0 \quad c_{n}-e_{2}: 1 \\
& e_{i} \cdot e_{j}=\delta_{j} \\
& \text { Interpretation of components of a vector when expressed in an }
\end{aligned}
$$

orthontenal bally

$$
\stackrel{\delta_{i j}}{z v_{i} \delta_{i j}}=v_{j}
$$

Meaning of v.ej

$$
V=V_{i} e_{i} \quad, \quad V_{i}=V_{\cdot} e_{i}=\left\{\begin{array}{l}
e_{i} \\
e_{i}
\end{array} \quad\right. \text { for an orthonormal basis }
$$

$$
\begin{aligned}
& \text { Coordinate transformad } \\
& v=v_{i} e_{i}^{\prime}=v_{1} e_{1}+v_{2} e_{2}\left[v_{e^{\prime}}=\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right)^{\prime}\right. \\
& v_{i} e_{i}^{\prime}=v_{1}^{\prime} e_{i}^{\prime}+v_{2}^{\prime} e_{2} \quad\left[v_{e^{\prime}}=\left[\begin{array}{l}
v_{1}^{\prime} \\
1_{2}
\end{array}\right]\right.
\end{aligned}
$$

The starting point is expressing the components of one basis set in the other basis set.

In general (2D, 3D) we write

$$
e_{i}^{\prime}=Q_{i j} e_{j}
$$

For this 2D example $e_{1}^{\prime}: \cos \theta e_{1}+\sin \theta e_{2}$

$$
e_{2}^{\prime}=-\sin \theta e_{1}+\cos \theta p_{2}
$$

$$
\mathcal{X}=\left[\frac{e^{\prime}}{e_{2}^{\prime}}\right]_{\text {expressed }} \operatorname{in} e_{\text {system }}=\left[\begin{array}{cc}
\cos & \sin \theta \\
-\operatorname{cov} \theta & \cos \theta
\end{array}\right]
$$

$e_{i}^{\prime} \cdot e_{k}=$ Quick It shall be

Summory

$$
e_{i}=Q_{i j} e_{j}, \quad \rightarrow Q_{i}=e^{\prime} e_{j}
$$

$e_{j}=Q_{i j} e_{i}^{\prime} \quad$ compenements of $\left\{e^{\circ}\right\}$ are expressed in ded cordinade syster in $3 D \quad\left[\begin{array}{ll}e i & \text { anin redars of }(1) \\ e,\end{array}\right.$

$$
Q=\left[\frac{e_{1}^{\prime}}{e_{2}^{\prime}} \frac{e_{3}^{\prime}}{e_{3}}\right.
$$

In TAMS51 λ is used instead of Q

Before coordinate transformation, we show Q is an orthogonal matrix.

$$
\left[\begin{array}{l}
e_{i}^{\prime}=Q_{i j, e_{j}} \longleftrightarrow Q_{i j}=e_{i}^{\prime} \cdot e_{j} \\
e_{j j}=R_{j i} e_{i} \longrightarrow R_{j i}=e_{j} \cdot e_{i}^{\prime}=Q_{i j}=Q_{j i}^{T}
\end{array}\right.
$$ seek R?

$\rightarrow R=Q^{-1}=Q^{\top}$ disintio of orthogenal

$$
\left.\begin{array}{ll}
\left.\sum^{\prime}\right\}=Q \\
\left\{Q^{\prime}\right\} \rightarrow & Q^{-1}\left\{e^{\prime}\right\}
\end{array} \quad\left(Q^{\top} Q\right)_{i j}=Q_{i k}^{\top} Q_{k j}=Q_{k i} Q_{k j}=\alpha_{j j}\right)
$$

orthoganal matrix \quad QkiQ Quj $_{\text {Qik }}=\delta_{i j}$

$$
Q^{\top} Q^{=}=Q Q^{\top}=I^{i} k Q_{j k}^{Q}=\left(\text { रूj } \quad \text { osslp } Q^{\top}=Q^{-1}\right)
$$

Herpereation of why $Q Q^{\top}=I:$

$$
\begin{aligned}
& =\left[\begin{array}{c|c|c|}
1 & 0 & \partial \\
\hline & 1 & \sigma \\
\hline- & -1 & 1
\end{array} \quad \text { why? } \quad e_{i}^{\prime} \cdot e_{j}^{\prime}=\delta_{i j}\right.
\end{aligned}
$$

why? $E_{i}^{\prime} \cdot e_{j}^{\prime}=\delta_{i}$

Orthonormal bases <-> Q is orthogonal

What is the real use of Q ?
 transformation and a coordinate transformation matrix Q also is also orthonormal.

tenser order

- Scalar

n
no Q (example temperaine speed.... diffusion- concentrate.
specs

Q ? Is magnitude of a vector a scalar?

$$
V=\sqrt{V \cdot V}
$$

Then we must prove that it's actually a scalar, that is any coordinate system that is used, the same value is computed.

$$
\begin{aligned}
& V_{-w}=\left(v_{i} e_{i}\right)\left(w_{j} e_{j}\right)=v_{i} W_{j} e_{i} \cdot e_{j} \\
& =\left\{\begin{array}{l}
V_{i} W_{j} \delta_{i}=V_{i} W_{i} \quad \text { mosel } \quad \text { orthonormal } \\
e_{i} \rho_{j}=\delta_{i j} \text { coordinate sysop }
\end{array}\right. \\
& \left(v i w, g_{1}\right) \stackrel{\text { cos } 2}{\underline{\cos }} \\
& \text { genaol cosomande } \\
& \text { sisters } \\
& V, W=\left\{\begin{array}{r}
V_{i} \cdot W_{i} \quad \text { orthonormal } b_{n} i s=\left[v_{1}-v_{n} \left\lvert\,\left[\begin{array}{c}
w_{1} \\
w_{1} \\
w_{2} \\
w_{1}
\end{array}\right]\right.\right. \\
a-a\left|w_{1}\right|
\end{array}\right. \\
& e_{i} \cdot e_{j} \neq \delta_{j} \\
& \operatorname{lil}_{j} e_{j}=\underbrace{g_{\tilde{j}}}_{\text {metric, }}
\end{aligned}
$$

Pat 4
Now, let's go back to orthonormal bases, and show that vi.wi is
in fact a scalar.

$$
\begin{aligned}
& v_{i} W_{i} \\
& v_{i}=Q_{m i} v_{m}^{\prime} \\
& w_{i}=Q_{n i} v_{n}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
W_{i} W_{i} & =\underbrace{Q_{m i} Q_{n i}}_{Q_{m i} Q_{i n}^{\top}=} Q_{m} Q_{m n}=\delta_{m n}^{\prime} \\
& =\delta_{m n} V_{m} W_{n}^{\prime}-V_{m}^{\prime} W_{m}^{\prime}
\end{aligned}
$$

So in fact, even if we had taken a bad route of defining vow based on vector components (vi.wi) for orthonormal basis, the
definition would have been a scalar.

$$
\begin{aligned}
& v=\binom{v_{1}}{v_{2}} \\
& * \ell_{1}(v)=\left|v_{1}\right|+\left|v_{2}\right| \\
& x_{x_{1}} \\
& \begin{array}{l}
C_{2}(V)=\sqrt{\left(\left.V_{1} \cdot\right|_{1} ^{2}+\left|V_{2}\right|^{2}\right.} \\
\ell_{p}(V)=\sqrt[P]{\left|V_{1}\right|^{p}+\left|V_{2}\right|^{p}}
\end{array} \\
& \# \operatorname{lom}_{\infty}(v)=\operatorname{lif}_{p \rightarrow \infty}(v)=\operatorname{Max}\left|v_{i}\right| \\
& =V \text { VV }>\text { scalar }
\end{aligned}
$$

