First, we need to show that dyadic product is in fact a linear operator

$$
\begin{aligned}
(u \otimes v)(a+\beta b) & \stackrel{?}{=}(u(\otimes) a+\beta((a v) b \\
(u \otimes v)(a+\beta b) & =u\left(v_{0}(a+\beta b)\right) \text { del. } \\
& =u\left(v_{1} a+\beta v_{0} b\right) \\
& =u(v, a)+\beta u(v \cdot b) \\
& =(u \otimes v) a+\beta(u \otimes v) b
\end{aligned}
$$

propenes of inner proved
def. of θ
So $U \otimes v$ ie in fact a linear operator from $\nu \rightarrow \nu$
Expression of a ind order tensor in an orthonormal ba, is

we cont to show

$$
T=T i j e_{i} \otimes e_{j} \quad \text { where } T r_{i}=e_{i} \cdot T e_{j}
$$

All we need to do is to show for $\forall u$

$$
\begin{array}{ll}
T u=\left(T_{y} e_{i} \otimes e_{j}\right) u & \text { need to show this } \\
\underbrace{T u}_{\text {vector }}=\underbrace{(T u)_{i}} e_{i} & \text { vi Tu } \quad \mid v=V_{i} e_{i}
\end{array}
$$

$$
\begin{aligned}
& \underbrace{1 u}_{\text {vector }}=\underbrace{(T u)_{i}}_{\downarrow} e_{i} \\
& =\left(e_{i} \cdot T u\right) e_{i} \\
& =[e_{i} \cdot \underbrace{T\left(u_{j} j_{j}\right)}) e_{i} \\
& V=T_{u} \quad\left\{\begin{array}{l}
v=V_{i} e_{i} \\
v_{i}=v_{i} \cdot e_{i}
\end{array}\right. \\
& \text { arthonremal bais } \\
& u=u_{j} \rho_{\jmath} \\
& =\left[e_{i} \cdot\left[\widetilde{u_{j}} T_{e_{j}}\right] e_{i}\right. \\
& =[U_{j}[\underbrace{e_{i} \cdot T_{e j}}_{\text {det } \cdot T_{i j}}]] e_{d} \\
& =T_{i j} u_{j} e_{i} \\
& \text { Tup } 1+\cdots 0_{n} e_{1} \\
& =u_{1} t e_{1+}+\cdots+u_{n} T_{n} \\
& T \text { is a liner apportor } \\
& \left.e_{i} \mid u_{1} T_{1}+v_{2} T_{2}-\cdots .\right) \\
& \theta_{1} e_{i} \cdot T_{u_{1}}+v_{2} \mathbb{C}_{1} \cdot T_{u_{2}} \ldots \\
& \text { properien of inner promet } \\
& a_{0}(\lambda, b)=\lambda a-b \\
& a_{0}(b+c)=a, b+a, c \\
& =T_{i j}\left(\frac { \pi } { e _ { i } \otimes 0 _ { j }) C l } \left(e_{i}\left(x y_{j}\right) u=\right.\right. \\
& =\left[T_{i j} e_{i} \otimes e_{j}\right) u \quad e_{i}\left(e_{j} u\right)=e_{i} e_{j} \\
& \begin{array}{r}
T=\left(\begin{array}{l}
\left.\left.T \tau_{j} e_{i} \otimes\right) e_{j}\right) \\
T_{i j}=e_{i} \cdot T_{j}
\end{array}\right.
\end{array} \\
& \text { Smiar to } \\
& e_{1} \otimes e_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array} \left\lvert\,\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & - & 0 \\
0 & 0 & 0
\end{array}\right]\right.\right. \\
& e_{2} \otimes e_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & n & 0
\end{array}\right)=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 2 & n \\
0 & c & 0
\end{array}\right] \\
& \text { wesay e, er aber eoge } \\
& T=T_{11}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & & 0 \\
0 & n & 0
\end{array}\right]+T_{12}\left[\left.\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 \\
0 & c & 0
\end{array}\left|+T_{13}\right| \begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array} \right\rvert\,\right.
\end{aligned}
$$

has for aude of er denar

Theorem 51 Let $\mathrm{T} \in \operatorname{Lin} \mathcal{V}$ with components $T_{i j}$ w．r．t．the r．C．c．f．X ，and let $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ with components u_{i}, v_{i} w．r．t．X ．Then

$$
\mathbf{T u}=\mathbf{v} \Leftrightarrow T_{i j} u_{j}=v_{i}
$$

$$
V=T V
$$

Proof．Suppose $\mathbf{T u}=\mathbf{v}$ ．Then

$$
v_{i}=T_{i j} u_{j}
$$

$$
\begin{aligned}
v_{i} & \left.=\mathbf{e}_{i} \cdot \mathbf{v} \text { (components of } \mathbf{v}\right), \\
& =\mathbf{e}_{i} \cdot(\mathbf{T u}) \text { (supposition), } \\
& =\mathbf{e}_{i} \cdot\left[\left(T_{k l} \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right) \mathbf{u}\right] \text { (component representation of } \mathbf{T} \text {), } \\
& =\mathbf{e}_{i} \cdot\left[T_{k l}\left(\mathbf{e}_{k} \otimes \mathbf{e}_{l}\right) \mathbf{u}\right] \text { (defns. of tensor }+ \text { and scalar mult.), } \\
& \left.=\mathbf{e}_{i} \cdot\left[T_{k l}\left(\mathbf{e}_{l} \cdot \mathbf{u}\right) \mathbf{e}_{k}\right] \text { (defn. of } \otimes\right), \\
& \left.=\mathbf{e}_{i} \cdot\left[T_{k l}\left(u_{l} \mathbf{e}_{k}\right)\right] \text { (components of } \mathbf{u}\right), \\
& =T_{k l} u_{l}\left(\mathbf{e}_{i} \cdot \mathbf{e}_{k}\right) \text { (distr. and homog. of .), } \\
& =T_{k l} u_{l} \delta_{i k}(\text { orthonormality of base vectors), } \\
& =T_{i l} u_{l}=T_{i j} u_{j} \text { (property of } \delta_{i k} \text { and labeling). } \\
\therefore \mathbf{T u} & =\mathbf{v} \Rightarrow T_{i j} u_{j}=v_{i} .
\end{aligned}
$$

Matrix is the component expression of a and order tensor in a particular coordinate system．

$$
=\left[\begin{array}{cc}
\sin \theta & \sin \theta \\
\sin \theta & \sin \theta
\end{array}\right]
$$

How about 2nd order tensors？

$$
r \div T 1
$$

$$
\begin{aligned}
& V_{2} V_{1} l_{i} \quad\left[\begin{array}{c}
V_{1} \\
r_{2}
\end{array}\right]_{i} \\
& V=V_{i}^{\prime} \cdot e_{i}^{\prime} \quad\left[\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right] \\
& v_{i}^{\prime}=母_{\sim}^{\sim} V_{j}^{\prime}[V]^{\prime}=W[V] \\
& V_{i}=母_{i j} V_{i}^{\prime} \quad[V]=Q^{\top}[V]^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Te } \left.T_{11} L_{0} 0 \begin{array}{c}
0 \\
0
\end{array}\right]+I_{12}\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0
\end{array}\right)+1_{13}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boris for 3D, zed arbor cancer is }
\end{aligned}
$$

$$
\begin{aligned}
& T=T_{i j} e_{i}\left(\theta O_{j}=T_{11} e_{1} \theta e_{1}+\cdots+T_{22} e_{20} \theta_{2}=\left[\left.\begin{array}{ll}
T_{11} & T_{i 2} \\
T_{21} & T_{22}
\end{array} \right\rvert\,\right. \text { in non-ppme }\right. \\
& T=T_{i j}^{\prime} e_{i}^{\prime}(\theta) e_{y}^{\prime} \\
& =\left[\begin{array}{ll}
\tau_{i 1}^{\prime} & T_{i,}^{\prime} \\
T_{21} & T_{i 2}
\end{array}\right] \text { ir } p_{s y^{\prime}+\operatorname{tin}}
\end{aligned}
$$

how is $[T]$ refalted to $[T]^{\prime}$

$$
\begin{aligned}
& T=T_{i j j} e_{i} \otimes e_{j} \\
& e_{i}=Q_{m i} e_{m}^{\prime} \\
& \left(e_{m}^{\prime}=Q_{m n} e_{n} \longleftrightarrow\right. \\
& e_{n}=Q_{m}\left(e_{m}^{\prime}\right) \\
& e_{j}=Q_{n j} e_{n}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=Q_{m i} Q_{n j} T_{i j} e_{m}^{\prime} \otimes e_{n}^{\prime} \\
=T_{m n}^{\prime} \quad e_{n}^{\prime} \otimes e_{n}^{\prime}
\end{array} \\
& \Rightarrow \underbrace{\overrightarrow{T_{m n}^{\prime}}=Q_{m i} Q_{n j} T_{\tilde{i} j}}_{\text {campare this to }} \\
& V_{m}^{\prime}=Q_{m i} V_{i}
\end{aligned}
$$

andhor way to look at this

$$
T_{m n}^{\prime}=Q_{i} T_{i j} Q_{j \eta}^{+}=\left(Q_{i} T Q^{+}\right)_{n a n}
$$

$$
\begin{aligned}
& T_{m n}=Q_{\text {mi }}^{T_{i j} Q_{j j}^{\prime}}=\left(Q^{T} T Q^{+}\right)_{m a n} \\
& {[T]^{\prime}=Q[T] Q^{+}}
\end{aligned}
$$

anather way to ged here, bed perhaps less rigarous.. u, v vectars Componenels in () systhm
$\left[v v_{T}=T\right][u)$

$$
\begin{equation*}
v_{j}=T_{y} v_{j} \tag{1}
\end{equation*}
$$

$$
[u]^{\prime}=Q[u] \rightarrow[u]=Q^{T}[u]^{\prime}
$$

$$
[v]^{\prime}=Q[v] \rightarrow[v]=Q^{\top}[v]^{\prime}
$$

plog (8) (3) in (1)
Q($\left.\quad Q^{\top}[v]^{\prime}=[T] Q^{\top}[u]^{\prime}\right)$
$\underbrace{Q Q^{\top}}_{\text {I beralse }}[v]^{\prime}\left(Q[T] Q^{+}\right)[u)^{\prime}$

$$
\begin{aligned}
& {[v]^{\prime}=[T]^{\prime}\left[u^{\prime}\right]} \\
& Q[T] Q^{T}
\end{aligned}
$$

If T is a second order tensor, then its components are transferred between two coordinate systems as,

The inverse, if the components of 2 index array follow the coordinate transformation above, it's a 2 nd order tensor
Theorem 53 Let there be a set of nine real numbers associated with every r.C.c.f. in a three-dimensional Euclidean point space \mathcal{E}. For example, consider the sets $\left\{\mathrm{X}, \mathbf{e}_{i}, T_{i j}\right\}$ and $\left\{\mathrm{X}^{\prime}, \mathbf{e}_{i}^{\prime}, T_{i j}^{\prime}\right\}$ where X and X^{\prime} are arbitrary frames with respective base vectors \mathbf{e}_{i} and \mathbf{e}_{i}^{\prime}. Then \exists ("there exists") $\mathbf{T} \in$ Lin \mathcal{V} given by $\mathbf{T}=T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}=T_{i j}^{\prime} \mathbf{e}_{i}^{\prime} \otimes \mathbf{e}_{j}^{\prime}$ iff the two-index symbols $T_{i j}$ and $T_{i j}^{\prime}$ satisfy the transformation rules

$$
T_{i j}^{\prime}=\lambda_{i k} \lambda_{j l} T_{k l} ; \quad T_{i j}=\lambda_{k i} \lambda_{l j} T_{k l}^{\prime}
$$

for all choices of $\left\{\mathrm{X}, \mathbf{e}_{i}, T_{i j}\right\}$ and $\left\{\mathrm{X}^{\prime}, \mathbf{e}_{i}^{\prime}, T_{i j}^{\prime}\right\}$, where $\lambda_{i j}$ are the cosines of the angles between \mathbf{e}_{i}^{\prime} and \mathbf{e}_{j}.

Example of a 2-array that is not a tensor

$$
\left[\begin{array}{ll}
\partial_{n} & \partial_{2} \\
\partial_{21} & \partial_{12}
\end{array}\right] \quad \begin{aligned}
\partial_{11} & =\frac{\partial u_{1}}{\partial x_{1}} \\
\partial_{2_{2}} & =\varepsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}
\end{aligned}
$$

eng. sheer strain

$$
\left[\begin{array}{ll}
E_{4} & E_{12} \\
E_{21} & E_{22}
\end{array}\right]
$$

$$
E_{12} E_{21}^{E_{2}}=\frac{\gamma_{12}}{2}
$$

$$
=\frac{V^{\prime}+\square_{4}^{\prime}}{2}
$$

Transpose of a tensor
Transpose of a second order tensor T is defined as,

$$
\begin{aligned}
& \forall u, v g)\left(v_{0} T_{u}^{t}=u_{0} T v\right) \quad \overbrace{u} T_{V}^{T v}=v \cdot T_{u}^{t} \\
& \left(u, T_{u}^{t} u\right)_{i}=\left(e_{i} T_{u}^{t}\right)=u_{0} T e_{i}
\end{aligned}
$$

What ran we say about $T_{\tilde{y}}^{t}$ in terms of ompmente of T in a cor dunade system?

Some properties of transpose:

1) $\left(T^{t}\right)^{t}=T$
2) $(T+\rho)^{t}=T^{t}+\rho^{t}$
3) $(\alpha)^{t}=\alpha T^{t}$
4) $I^{t}=I$
5) $(u(x) v)^{t}=v \otimes u$
choose a scold system

$$
\begin{aligned}
& e_{\theta}\left(\Delta e_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
0 & (& 0
\end{array}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
c & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right. \\
& \left.e(\theta) e_{1}=\left[\begin{array}{lll}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left(e_{(}\right) e_{2}\right)^{t}
\end{aligned}
$$

Some definitions related to symmetry:
Symmetric tensor:

$$
\begin{aligned}
& T^{t}=T \quad \begin{array}{l}
T_{y}=T_{j i} \\
\text { Sym }
\end{array}=\left\{T_{6} L_{n}^{\text {munemens }}\left|T_{=}^{t}=T\right\rangle\right.
\end{aligned}
$$

Skew-symmetric

$$
\begin{aligned}
& T=\sim \\
& \text { Stew }=\{\underset{l \in L i n}{t} \mid T=(T)
\end{aligned}
$$

Any ind order tensor can be written as the sum of a symmetric and skew symmetric tensors

$$
\begin{array}{r}
T=\text { Sym }_{v} T+\text { skew } T \\
\\
\frac{T_{+} T^{z}}{2} \frac{T-T^{t}}{2}
\end{array}
$$

side note

$$
\begin{aligned}
& H=\nabla_{n} \\
& H=\underset{\mathcal{E}}{\substack{\operatorname{syn} H}} \underset{\substack{\text { sman } \\
\text { otah }}}{\sim} \cdot d t
\end{aligned}
$$

Tensor product:

$$
S, T \in L \text { in } \quad \& T E L \text { wher } \quad(S T) u:=\&(T(u))
$$

Some properties of tensor product:
1 (RS)TeRST) assurative
2) $T\left(R_{4}\right)=T R_{4} T s$ distabulive
3) $(\alpha R)(\beta T)=(\alpha \beta)$ RT homogerty
4) $5 T=T 5=T$
5) $(\mathbb{S S})^{t}=S^{t} R^{t}$
component expressin $\quad(S T)_{\bar{i}}=$?
$(S T)_{i j}=S_{i k} T_{k j}$

Theorem 61 Let $\mathrm{S}, \mathrm{T} \in \operatorname{Lin} \mathcal{V}$. The rectangular Cartesian components of the product ST w.r.t. a given r.C.c.f. $\left\{\mathrm{X}, \mathrm{e}_{i}\right\}$ are

$$
(\mathbf{S T})_{i j}=S_{i k} T_{k j},
$$

where $S_{i k}$ and $T_{k j}$ are the components of S and T . w.r.t. X .
Proof. According to Definition 28, the components of ST w.r.t. the frame $\left\{\mathrm{X}, \mathrm{e}_{i}\right\}$ are given by

$$
\begin{aligned}
(\mathbf{S T})_{i j} & =\mathbf{e}_{i} \cdot(\mathbf{S T}) \mathbf{e}_{j} \\
& =\mathbf{e}_{i} \cdot \mathbf{S}\left(\mathbf{T e}_{j}\right) \text { (definition of tensor product), } \\
& \left.=\mathbf{e}_{i} \cdot \mathbf{S}\left(\mathbf{T e}_{j}\right)_{k} \mathbf{e}_{k} \text { (component form of vector } \mathrm{Te}_{j}\right), \\
& =\mathbf{e}_{i} \cdot \mathbf{S}\left[\mathbf{e}_{k} \cdot\left(\mathbf{T e}_{j}\right)\right] \mathbf{e}_{k} \text { (Theorem 36), } \\
& =\mathbf{e}_{i} \cdot \mathbf{S}\left(T_{k j} \mathbf{e}_{k}\right) \text { (Definition 28), } \\
& =\mathbf{e}_{i} \cdot\left(T_{k j} \mathbf{S e} \mathbf{e}_{k}\right) \text { (linearity of } \mathbf{S} \text {), } \\
& =T_{k j} \mathbf{e}_{i} \cdot \mathbf{S e}_{k} \text { (linearity of inner product), } \\
& \left.=T_{k j} S_{i k}=S_{i k} T_{k j} \text { (Definition 28, properties of } \Re\right) .
\end{aligned}
$$

