Determinant of a second order tensor

Express the components of a tensor in a given orthonormal coordinate system:

$\|$ matrix expressing of T in this parch ceroduate system

$$
T \quad u \rightarrow T_{4}
$$

$$
\operatorname{det} \overline{1}=\operatorname{det}[\overline{(i)}]
$$

componats w (J conrdiudesyshe

$$
\left[\begin{array}{c}
\frac{1}{6} \\
\vdots \\
i
\end{array}\right.
$$

Since in this case, the definition is coordinate-system dependent, we need to show that the value of the determinant is scalar, meaning that we get the same number regardless of the coordinate system.

Some properties of determinant:
$\operatorname{det} \rho T=\operatorname{det} \rho \operatorname{det} T$
$\operatorname{det} S^{t}=\operatorname{de} S$
$\operatorname{det}]=1$
ant $0=0$
$\operatorname{det} u \otimes v=O$
Crumple

$$
\text { de ever, de }\left[\begin{array}{ccc}
0 & c & 0 \\
0 & 2 \\
n & 0 & -
\end{array}\right]: 0 \quad\left[\begin{array}{ll}
u_{2} & \vec{v} \\
u_{s} & \vec{v}
\end{array}\right]=0
$$

Trace of a second order tensor:

- Trace is defined through the following conditions:

1) Trace is a linear operator
2) we define

The second condition defines trace for the smallest building blocks of tensors, egg. basis for and order tensors

Assume we chose a cordate system

$$
\begin{aligned}
& T=T_{i j} e_{i} \otimes e_{j} \\
& \operatorname{tr}(T)=\operatorname{tr}\left(T_{\bar{l}} e_{i} \otimes e_{j}\right) \\
&=T_{i j} \underbrace{r\left(e_{i} \otimes e_{j}\right)} \\
&=T_{c_{j}}\left(e_{i} \cdot e_{j}\right)
\end{aligned}
$$

1) Linemily if trace
2) $\quad \operatorname{trace}(u(v))<U . v$

$$
\begin{aligned}
& =\operatorname{det}[T \bar{y}) \\
& Q Q^{t}=I \\
& \operatorname{det} Q Q^{t} \cdot \frac{1}{2} O^{2}=1=\operatorname{del} Q(\operatorname{deb} Q)^{+}:(\operatorname{den} Q)^{M}
\end{aligned}
$$

$$
=T_{y} \dot{\varepsilon}_{\dot{y}}=\overline{L_{i}}
$$

Do ne reed to prove that

$$
\text { trace }(T)=T_{i} \text { is coordmate.independert." }
$$

Na; initial del. was coordinate independent
but if we wanted

$$
\begin{aligned}
& \text { Titi }=Q_{i \sim}^{\prime \prime} T_{\operatorname{Lin}}=\left[Q_{m i} Q_{i n}\right] T_{m \sim} \\
& =(\underbrace{t}_{J} a)_{\operatorname{mn}}^{1 \mathrm{mn}} \\
& =\operatorname{Smn} \operatorname{Imn}=\operatorname{Inm}_{\operatorname{mm}}
\end{aligned}
$$

Some properties of trace:

$$
\begin{aligned}
& \text { 1. ir } T^{t}=t(T) \\
& \text { 2. to }(5 T)=-16(T S) \\
& \text { 3. to }(I d)=d \\
& \left.\operatorname{tr}\left[\begin{array}{ccc}
1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=3 \quad \begin{array}{cc}
d a & \text { dimension } \\
(d=2 & 2 D \\
3 & 3 D
\end{array}\right) \\
& \text { 4. } v(0)=0
\end{aligned}
$$

Definition of inner product for 2 nd order tensors (Def 34 in our course notes)
U.V in coordinate system
$u \cdot v=u_{i} v_{i}$

$$
\begin{aligned}
& \begin{aligned}
& u \cdot v=u_{i} v_{i} \\
&=U_{6} v_{1}+v_{2} v_{2}+v_{y} v_{3} \\
& \lll<3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi h_{1}+r_{2} s_{2} \ldots \\
& -T_{i j} \rho_{i j} T_{i j} g_{j i}^{*}=\left(T_{T}^{t}\right)_{i i} \\
& =\operatorname{trace}\left(T S^{t}\right)
\end{aligned}
$$

Defines on inner product bred norm:

$$
\| T V=\sqrt{7 B T}
$$

A very useful side note for you:
Vector-based norm for second order tensors
If we know how to define a norm for vectors, we can use that to define a norm for second order tensors:

norm of a second order tensor
le rim is the magnitude

Qr vetorbored norm is a tensor is

We ran even define norm for the order elan ticicty tenser later

of we colt have define $\triangle \mathrm{Cl}=\sqrt{C_{0} \mathrm{C}}=\sqrt{C_{j k} l C_{\text {Gie }}}$
1.11.9 Inverse of a tensor

$$
T^{-1} T-T T^{-1}=1
$$

Theorem 76: Components of the inverse of T in a given coordinate system are:

Inverse of a tensor exists if get $T \neq 0$
invertible
tenors wilt >o deft

$$
\begin{aligned}
& \operatorname{LnV}=\{T \sigma L \cdot v \mid \text { wet } T>O\}\} \\
& S_{n} \mid V=\{-\mid d t \neq 0\}
\end{aligned}
$$

Higher order tensors
We already discussed elasticity tensor

Components of C in different coordinate systems:

$$
C=C_{j k l} e_{i}\left(\lambda e_{j} \text { (M (t) Q } 1\right.
$$

Indicial notation of this tensor product

$$
\begin{aligned}
& C=C_{j k l} e_{i} \theta e_{j} \otimes e_{n} \theta l \\
& e_{i}=Q_{m i} e_{m}^{\prime} \\
& e_{j}=Q_{n} e^{\prime} n \\
& e_{k} \text { г } Q_{\theta k} e_{0} \\
& Q l=e_{p l} e_{p}^{1}
\end{aligned}
$$

I should have first defined polyads used above ...
They are generalization of dyadic product:

$$
\begin{gathered}
\left(u_{1} \otimes u_{2}\right) v=m\left(u_{2} \cdot v\right) \\
\left(u_{1} \otimes \cdots v_{n} \otimes u_{n}\right) v=\left(u \otimes \otimes v_{2} \cdots \theta \theta_{n} \cdot\right)\left(u_{n} \cdot v\right) \\
\text { seder }
\end{gathered}
$$

See definition 46 for components of m'th order tensor (shown in red here)

Components of a tensor

$$
=\left(u \otimes v u_{2} \cdots(x) U_{n-1}\right)\left(u_{n} \cdot v\right)
$$

$$
\begin{aligned}
\text { order } & 1 \text { (vector) } \\
V & =V_{i} l_{i} \\
V_{i} & =V_{0} e_{i}
\end{aligned}
$$

$$
2
$$

$$
\text { Te } T_{j} e_{0} e_{j}
$$

$$
\pi i=e_{i}\left(t e_{j}\right)
$$

Theorem 84 for equation (*)
Theorem 88 for coordinate transformation of moth order tensors tensors

We have identity matrices from m'th order to m'th order tensors

