
Determinant of a second order tensor

Express the components of a tensor in a given orthonormal coordinate system:

Since in this case, the definition is coordinate-system dependent, we need to show that the value of the determinant is scalar, meaning that 
we get the same number regardless of the coordinate system.
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Some properties of determinant:

Trace of a second order tensor:

Trace is defined through the following conditions:-

Trace is a linear operator1)
we define2)

The second condition defines trace for the smallest building 
blocks of tensors, e.g. basis for 2nd order tensors

   CM Page 2    



Some properties of trace:

Definition of inner product for 2nd order tensors (Def 34 in our 
course notes)
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A very useful side note for you:

Vector-based norm for second order tensors

If we know how to define a norm for vectors, we can use that to define a norm for second order tensors:
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1.11.9  Inverse of a tensor

Theorem 76: Components of the inverse of T in a given 
coordinate system are:
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Inverse of a tensor exists if det T 

Higher order tensors

We already discussed elasticity tensor

Indicial notation

Indicial notation of this tensor product

Components of C in different coordinate systems:
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I should have first defined polyads used above …
They are generalization of dyadic product:

See definition 46 for components of m'th order tensor (shown 
in red here)

Theorem 84 for equation (*)
Theorem 88 for coordinate transformation of mth order 
tensors
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Theorem 84 for equation (*)
Theorem 88 for coordinate transformation of mth order 
tensors

We have identity matrices from m'th order to m'th order 
tensors
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