1.13 Vector cross (or exterior) product

$$
\vec{u} \times \vec{v}=?
$$

magnuwe $|\vec{U} \times \vec{V}|=A \quad$ area $A=|u| H=$
direction is normal to
$|u||||\mid \operatorname{Sin} \theta$

u, v plane following right hand side rue: recall $u . v=$ uelures θ

One can show that this definition is consistent with

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\underbrace{\left(E^{3} v\right) u} \\
& { }^{\frac{3}{E}}=\epsilon_{r j k} e_{i} \theta e_{j} \otimes l_{k}
\end{aligned}
$$ oelternationg tenser

Expression of $U \times V$ in a given coordinate system

$$
\begin{aligned}
U \times v & =\operatorname{det}\left|\begin{array}{ccc}
i & j & k \\
u_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\epsilon_{i j k} v_{i} v_{j} e_{k}
\end{aligned}
$$

Use of $U \times V$?

- Computing area

$$
\begin{aligned}
& v \times u=-U \times v \\
& U_{\times(v \times W)} \stackrel{\rho}{\rightleftharpoons}(u \times v) \times w N_{0}
\end{aligned}
$$

17/s not ascoclature

$$
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}
$$

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}
$$

Triple product

$$
(u \times v) \cdot w=\operatorname{det}\left[\begin{array}{lll}
u_{1} & v_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & v_{3}
\end{array}\right]
$$

vol of terlima hadron $V^{\prime \prime}$

$$
\begin{aligned}
& =\frac{(\mu \times v) \cdot \omega}{6} \\
& (\mu \times v) \cdot \omega>0
\end{aligned}
$$

thyy're called to be positively oriented for follow the R\| rules

$$
\begin{aligned}
& \begin{array}{l}
\nabla \\
\text { volume }=A H=A|\omega| \operatorname{Cos} \psi
\end{array} \\
& \begin{array}{l}
=\underbrace{|u \times v||\omega| \cos \psi}_{\begin{array}{c}
\psi_{i i} \text { angle } \\
\text { between } \\
u \times v \\
\text { U } w
\end{array}} \\
(U \times v)_{0 \omega}
\end{array} \\
& \text { A }
\end{aligned}
$$

Special types of and order tensors:

1. Orthonormal
2. Skew symmetric
3. Symmetric
4. Positive definite

For 2nd order orthogonal tensors we have a similar relation:

What does an orthonormal tensor represent?
rotation operation

$$
V \quad \rightarrow \frac{\text { IV }}{\text { v rolled by } \theta \text { around orrin } . ~}
$$

vrolaled by θ argand orion
Expression of T is $\left(\&_{1}, M_{r}\right)$ systen.

$$
\begin{aligned}
& \stackrel{\binom{T_{11}}{T_{21}} \neq\left[\begin{array}{cc}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right)\left[\begin{array}{l}
e_{1} \\
0
\end{array}\right]}{e_{1}} \\
& T e_{1}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]=\sigma_{1}^{1}(T) \\
& T_{e r}=\left[\begin{array}{c}
-\sin \theta \\
c \theta
\end{array}\right]=\cot (T) \\
& C_{j}(T)=\left[e_{j}\right] \\
& \operatorname{rotatic} T=\left[\begin{array}{c|c}
\cos \theta & -\Sigma \theta \\
\sin \theta & \operatorname{co} \theta
\end{array}\right]
\end{aligned}
$$

Rotation is an orthogenal eperation

Anolher example
Reflection
e.g writ y axis
$\begin{aligned} & \operatorname{retlechi} \\ & \operatorname{det} T=-1\end{aligned} T=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$

WW rotation and/or reflectic orthogonal zensor

The following statements are equivalent

1. T_{e} Orth V
2. $\forall u a v \quad T u \cdot T v=u \cdot v \quad$ posers inner pandect
3. $v_{n}|T u|=|u|$ magnitude

4 turv $|T a-T v|=|u-v| \quad=2 \mid s \sin e^{2}$
$b \cdot T a=T^{+} b \cdot a$
$1 \Leftrightarrow 2$

$$
\uparrow^{T u \cdot T v}=\underbrace{T^{t} T}_{I=u \cdot v} u \cdot v
$$

(1) te ont D
$\Rightarrow T^{\dagger}=\tau$
$2 \Rightarrow 3 \quad|T u|=\sqrt{T u \cdot T u}=\sqrt{\operatorname{tom} 2} \sqrt{u \cdot u}=|u|$
$3 \Rightarrow 2 \quad|T u|=|u|$
$|T v|=|v|$
$|T(u+v)|=|u+v|$
square all
$\left.3 \rightarrow 4 \quad\left|\quad{ }^{(3)} \quad\right| u\right|^{\text {end rearrange }}=|u|^{\text {a }}$ choose $0-v$ for v

$$
|T(u-v)|=|u-v|
$$

$4 \rightarrow 3 \quad \mid T(u-v|=|u-v| \quad$ Chase $v=0 \rightarrow| T u|=(3)| u \mid$
As I mentioned, orthogonal tensors preserve angle as well.
Why?

$$
\begin{gathered}
\theta_{T u, T v}=\theta_{u, v} \\
\cos \theta_{T u, T v}=\frac{T u \cdot T v}{\frac{\theta_{u} \mid(T v \mid}{\mid \underbrace{}_{\rho r o p s}}=\frac{i_{u, v}}{|u||v|}}=\operatorname{co}_{u, v}
\end{gathered}
$$

\longrightarrow augle is preserred.

Skew-symmetric tensors:
They'll represent "small rotations"
$W^{t}=-W$

$$
\underset{u_{j} u_{i}=u_{i} u_{j}}{W_{i j}}
$$

HWT
$u \cdot W u=u_{i}(W u)_{i}=u_{i} W_{i j} u_{j}=u_{i} u_{j} W_{i j}=0$
anoleve cooy to show this

$$
\begin{aligned}
& \underbrace{v \cdot W u}_{A}=\underbrace{\left(W^{t}\right)}_{=-w} u \cdot u=\left(((-w) u) \cdot u=-w_{u} \cdot u=-u \cdot W_{u}\right. \\
& A \propto A \rightarrow 2 A=0 \rightarrow A=0 \quad U \cdot W_{a}=0
\end{aligned}
$$

H W is ster symmini

$$
W_{j i}=-W_{i j}
$$

$W_{\underline{i} i}=-W_{i \underline{i}}$ sio summatio on b
$\downarrow_{W_{i \underline{i}}=0 \quad \text { diagands are zero }}$
in 31 we have

$$
\begin{aligned}
& W=\left[\begin{array}{ccc}
0 & W_{12} & -W_{31} \\
-W_{21} & 0 & W_{23} \\
W_{31} & -W_{25} & 0
\end{array}\right] \\
& \overbrace{3}^{1} \\
& W_{u}=\left[\begin{array}{ccc}
0 & w_{12} & -w_{31} \\
-w_{2} & 0 & w_{23} \\
w_{31} & -w_{23} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
w_{12} U_{2}-w_{31} U_{3} \\
-w_{12} U_{1}+w_{23} u_{3} \\
w_{31} U_{1}-w_{23} v_{2}
\end{array}\right] \\
& =\left[\left.\begin{array}{l}
\omega_{23} \\
\omega_{31}
\end{array} \right\rvert\, X\left\lceil\left.\begin{array}{l}
v_{1} \\
v_{2}
\end{array} \right\rvert\,\right.\right. \\
& \text { it at nome }
\end{aligned}
$$

$$
=\left\lfloor\begin{array}{l}
\omega_{31} \\
\omega_{12}
\end{array}\right] \times\left.\left(\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]\right|_{0} \quad \text { you can checks }
$$

$$
V \sqrt{ } u=w \times u
$$

1-1 corespondence between skew tensors W \& their corresponding "small rotation" vector s wt

$$
\begin{aligned}
& W_{i}=\frac{-1}{2} \epsilon_{i j k} W_{j k} \\
& W_{i j}=-\epsilon_{j} j k W_{k}
\end{aligned}
$$

Why $\omega \times$ le can represent small rotations

$$
\begin{aligned}
& \omega=|\omega| e_{\omega} \\
& u=u_{\|}+u_{T} \\
& R_{\theta} u=\underbrace{R_{\theta} u_{1} \mid+R_{\theta} u_{T}}_{\substack{\text { Rodin } \\
\text { with angles along } e_{\omega}}}
\end{aligned}
$$

look from the top.
e_{ω} going at of the plane

