Small angle rotation and relation to skew matrices

$$
\text { ResaM } \quad W U=a \times J
$$

Lade from the top.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & -\theta
\end{array}\right]\left[\begin{array}{l}
\theta \\
0
\end{array}\right]
$$

$\omega \times u \approx \vec{y}-\vec{x}=\vec{\omega} \times \vec{u}=\left[\begin{array}{l}0 \\ 0 \\ \theta\end{array}\right] \times\left[\begin{array}{l}\ell \\ 0 \\ 0\end{array}\right]$

Skew matrices and their corresponding vector w, represent the change of location for small angle rotation (when the magnitude of $w=\theta$ is small).

Recall that we can write any tensor as the summation of its symmetric and skew-symmetric parts:

$$
T=S+W \quad S=\frac{T_{+} T^{t}}{2} \quad W<\frac{T-T^{t}}{2}
$$

How about symmetric tensors?

Eigen-decomposition \& symmetric tensors
Eigenvector \& values

What about the case that Tu II u

$$
\begin{aligned}
& \omega_{x \nu}=\omega_{y} / \hat{u}_{| |}^{0}+\omega_{x} u_{*} e_{\omega}
\end{aligned}
$$

uner ura. $\operatorname{rim}|6| \mid \quad u$

$$
\begin{aligned}
T u & =\lambda u \\
& \int_{\substack{\text { eggenalve }}} l_{\text {engenveder }}
\end{aligned}
$$

for an $n \times n$ mairix we have a maximum of n (iverty independert (eagenvectar, value) paivs

$$
\begin{aligned}
& T u_{(1)}=\lambda_{1} u_{(1)} \\
& T u_{z}=\lambda_{2} y_{u} \\
& T \overbrace{T\left[U_{(1)}\left|\psi_{(2)}\right| \ldots \mid u_{(n)}\right]}^{T}=\left[\lambda_{1} u_{(1)}\left|\lambda_{2} \psi_{2)}\right| \ldots-\lambda_{i n} \lambda_{(n)}\right] \\
& =[u_{(1)}|\cdots| \underbrace{}_{\Delta} u_{(n)}^{\left\lvert\,\left[\begin{array}{llll}
\lambda_{1} & & & \\
& & & \\
& & & \\
& & \lambda_{n}
\end{array}\right]\right.} \\
& T U=U \Lambda \\
& \Gamma u_{(i,}=\lambda_{i} u_{\text {no summatio on i }} \\
& T=U \wedge U^{-1} \quad \text { duagonalized form of } T \\
& \begin{array}{c}
\left.T^{2}=\left(U \wedge U^{-1}\right)\left(U \wedge U^{-1}\right)=U \wedge\left(U^{-1}\right)\right) A U^{-1}=U \wedge I \wedge U^{-1}= \\
U \lambda^{2} U^{-1}
\end{array} \\
& \text { Siminy } \quad T^{n}=U \Lambda^{n} U^{-1} \\
& \text { l.) } r=100
\end{aligned}
$$

$$
\begin{aligned}
& \text { heal } e^{\lambda}=1+\lambda+\frac{\lambda^{2}}{2}-\frac{1^{3}}{3!} \cdots \\
& \bar{e}=\bar{\sigma}+T+\frac{1}{2!} T^{2}+\frac{1}{3!} T^{3} \cdots \cdot= \\
& U \Lambda^{0} U+U(n) U^{-1}+U\left(\frac{1}{2} R^{2}\right) U^{-1}+\cdots \\
& {[1+1} \\
& 1+\lambda_{2}+\lambda_{2 / 2}^{2} \cdots+1 \quad \mid l^{-1} \\
& e^{\lambda}=U\left[\begin{array}{lll}
e^{\lambda} & & \\
& & \\
& & e^{\lambda_{n}}
\end{array}\right] V^{-1} \\
& f(T)-U\left[{ }^{f\left(\lambda_{1}\right)}{ }_{f\left(\lambda_{n}\right)}\right) u^{-1}
\end{aligned}
$$

Are all square matrices diagonalizable?
The matrix must have n linearly independent eigenvectors.
If a matrix has n distinct eigenvalues -> the corresponding eigenvectors are linearly independent

$$
\begin{gathered}
\Gamma_{n \times n} \quad \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \quad \neq \lambda_{n} \\
\\
\lambda_{i} \notin \lambda_{j} \text { for } \not \not \neq j
\end{gathered}
$$

The problem can arise if the matrix has repeated eigenvalues

$$
\begin{aligned}
& \operatorname{Te}\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right) \quad \begin{array}{l}
\lambda_{1,2}=3
\end{array} \quad \begin{array}{l}
\text { aljehraic multipliaty } \\
\lambda_{3}=5
\end{array} \rightarrow \begin{array}{l}
2 \text { even values } 3
\end{array} \\
& \text { ellen velar s } 1!1 \\
& x_{3} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { ᄂ- } 0 \text { s」 } \because->\longrightarrow \\
& \text { eigen veclor }>\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Example of nou dagonalizable matris

$\lambda_{L}=\lambda_{z}=1$ eomen. 1 has Algebraic meltiplíuty

$$
\bar{m}_{A}(1)=2
$$

Finding eiger vecter

$$
\left.\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=1 \begin{array}{l}
\lambda \\
v_{1} \\
v_{2}
\end{array}\right]
$$

the anly valid $\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$ slu is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Geometix multuphaty of T for λ_{2} is $1 \quad m_{G}(l)=1$
This mabixe is not deagonalisoble
Fcrtior reading
Jordan Form

Done with the background, we focus on symmetric matrices:
Example in 3D
$r a b<1$

Examples in sid
Some properties of symmetric matrices:

1. Eigenvalues are real:
2. For distinct eigenvalues, their corresponding eigenvectors are normal to each other

$$
\left.\begin{array}{ll}
\text { a) } A u_{(1)}=\lambda_{1} u_{(1)} \\
\text { b) } A u_{(2)} & =\lambda_{2} u_{(2)}
\end{array} \quad \lambda_{1} \neq \lambda_{2}\right\} \rightarrow u_{(1)} \perp u_{(2)}
$$

$$
\begin{aligned}
& \text { - of a) witt } y_{2} \quad u_{(2)} \cdot k u_{(1)}=\lambda_{1} u_{(2)} \cdot u_{(1)}=\lambda_{1} u_{(1)} \cdot u_{(2)} \\
& \text { of b) }=\varphi_{1)}
\end{aligned}
$$

Assume An xn, symmetric, has n distinct eigenvalues $->$ then we can form n orthonormal eigenvectors:

$$
\begin{array}{ll}
A y_{(1)}=\lambda_{1} u_{11} \\
\text { Same with } 0_{(2,1, \ldots} & \underbrace{e_{1}^{e}}_{\substack{\left|\omega_{11}\right|}}=\lambda_{1} e_{1}^{*}
\end{array}
$$

- $e_{i}^{\prime \prime}$'s are egen vectors of A

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right] \\
& A^{\top}=A
\end{aligned}
$$

$$
\sqrt[e_{i}^{*} \cdot e_{j}^{*}=\delta_{i j}]{ }
$$

$A \rightarrow$ orthemomal I pored this when eigenvalues of symnetini A are distinct but this also holds when they have repeated eigenvalues

$$
\begin{aligned}
& \text { iD } \\
& A=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \xrightarrow{\text { if sem. }} \quad A=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right] \\
& {\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{2}
\end{array}\right]} \\
& \left.\begin{array}{r}
\rightarrow\left[\begin{array}{cc}
a-\lambda & b \\
b & d-\lambda
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\binom{v_{1}}{v_{2}} \neq\left\{\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}\right\} \longrightarrow \\
& \operatorname{det}\left[\begin{array}{ll}
a-\lambda & b \\
b & d-\lambda
\end{array}\right]=0 \rightarrow \lambda^{2}-(a+d) \lambda+a d-b^{2}=0 \\
& \lambda=\frac{a+d \pm \sqrt{(a+d)-4\left(a d-b^{2}\right)}}{2} \\
& \lambda_{1,2}=\frac{a+d \pm 1 /(a-\bar{d})^{2}+4 b^{2}}{2}
\end{aligned}
$$

When do we have repented agen values

$$
\begin{aligned}
& (a, d)^{2}+4 b^{2}-0 \rightarrow \begin{array}{l}
a-d \\
b=0
\end{array} \\
& A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right] \rightarrow \lambda_{1,2}=a \\
& \rangle \underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & \sigma
\end{array}\right]}_{A-\lambda \pm}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \rightarrow \text { any } U=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \text { is an epecvector } \\
& A=\left[\begin{array}{ll}
a & 0 \\
n & a
\end{array}\right] \quad A u=(a J) u=a u
\end{aligned}
$$

we can choose any of these as orthonormal eden vectors

30

$$
A=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right] \quad \begin{aligned}
& \operatorname{det}\left(A, \lambda_{1}\right)=0 \\
& 30 d \text { order eq for } \lambda \\
& \lambda_{1}, \lambda_{2}, \lambda_{3}
\end{aligned}
$$

$\operatorname{cose} 1: \quad \lambda_{1} \neq \lambda_{2} \quad \lambda_{2} \neq \lambda_{3} \quad \lambda_{1}, \not \lambda_{3}$

Since each eigenvalue is distinct -> it has a distinct eivenvector (sized to 1):

Case 2: two eigenvalues are equal
λ_{3} is delict

case 3

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=a
$$

$\begin{array}{ll}T=a I & \text { any vector is an elgon } \\ \text { Jest } 3 & \text { arbitrary interily orthonormal vectors }\end{array}$

For an nun symmetric matrix:

1. It is always diagonalizable
2. Eigenvalues are real
3. We can always find n orthonormal eigenvectors.

How to calculate eigenvectors of a 3×3 matrix:

Cayley-Hamilton equation:
Characteristic equation of the tensor:

$$
-\sigma^{3}+I_{1} \sigma^{2}-I_{2} \sigma+I_{3}=0
$$

$$
I_{1}=\operatorname{tr}(\rho)=S_{1}+S_{22}+S_{33}
$$

$I_{2}=\frac{1}{2}\left[\left(\operatorname{tr}(S)^{2}-\operatorname{tr}\left(s^{2}\right)\right]=\frac{1}{2}\left(s_{i i} s_{j}-S_{j-5} s_{j i}\right)\right.$

$$
I_{3}=\operatorname{det} S_{1,1}
$$

