CM2021/10/07

Tuesday, October 5, 2021 4:31 PM

Kinematics:

Definition 72 Let $\overset{0}{\mathcal{B}}$ be an open, bounded, regular region f a Euclidean point space \mathcal{E} . A deformation f is a mapping (function) of points in $\overset{0}{\mathcal{B}}$ onto another open region of \mathcal{E} with the properties

ん

 $\underbrace{1. \ f \ is \ one-to-one; \ i.e., \ f(x) = f(y) \Rightarrow x = y \ \forall \ x, y \in \stackrel{0}{\mathcal{B}},}_{}$

$$\frac{2. \mathbf{f} \in C^2(\overset{0}{\mathcal{B}}), \mathbf{f}^{-1} \in C^2(\mathbf{f}(\overset{0}{\mathcal{B}})),}{3. \det \nabla \mathbf{f}(\mathbf{x}) > 0 \ \forall \ \mathbf{x} \in \overset{0}{\mathcal{B}}.}$$

Jelar ma

CM Page 2

Read Definitions 73, 74, 75 on trace operation

Trace operator: once we have a quantity defined inside a domain -> we can EXTEND it to the boundary of the domain

Remark 28 The requirement of well-behaved first partial derivatives supports the unambiguous extension of f to the boundary $\partial \mathcal{B}$. Inductively, the trace operator "evaluates" a function $f \in C^M(\overset{0}{\mathcal{B}})$ and its partial derivatives up to order M - 1 on $\partial \mathcal{B}$. Specifically, for any deformation $\mathbf{f} \in C^2(\overset{0}{\mathcal{B}})$, the trace allows us to "evaluate" the components f_i and the partial derivatives $f_{i,j}$ on $\partial \mathcal{B}$. This is sufficient for a complete kinematic description of the closed body \mathcal{B} . These arguments are associated with the following Extension Theorem.

Property 3:

Next, we are going to discuss

- how line segments, areas, volumes change because of deformation.

- Rigid deformation.

Definition of displacement

Rigid body deformation

A Rigid body deformation consists of possible translation plus rotation

Theorem 119: Let f be a rigid deformation and O the origin. We define the relative displacement w.r.t. origin as:

What if we represent rigid motion w.r.t. another coordinate system?

71

Change of 1D objections: line segment -> length and angle between line segments 2D objects: change of surface area 3D objects: change of volume

