Recall from lost time
$d y=F d x$
$|d y|=\sqrt{d x \cdot C d x}=|U d x|$
$C: F^{t} F, U=\sqrt{C}$ right stretch

rind Carchy-Green
deformatic tensor
C is sym, ps. del it has tine >o ergen values and orthogonal eigenvectors

$$
\begin{aligned}
& \left\langle c_{i}^{*}=\left[\begin{array}{ccc}
\lambda_{c}^{\prime} & 0 & 0 \\
0 & \lambda_{c}^{2} & 0 \\
c & c & \lambda_{c}^{3}
\end{array}\right]\right. \\
& \Gamma U^{k}=[\sqrt{c}]^{+}=\left[\begin{array}{ccc}
\sqrt{\lambda_{c}^{\prime}} & 0 & 0 \\
0 & \sqrt{\lambda_{c}^{2}} & 0 \\
c & 0 & \sqrt{\lambda_{c}^{3}}
\end{array}\right]
\end{aligned}
$$

$\frac{|d y|}{|d x|}=\lambda_{0}^{i}$ for $d x$ along e_{i}^{p}

$$
F \cdot R U=V R
$$

$F=V_{g / x}$
firm polar decomposed $\operatorname{det} F>C \rightarrow R$ simply a roth-
general
rotuli shysided stram
detormati \rightarrow stretch port + rotation + translah.
compare this with rigid defornon:
Rigid defomatic

$$
F: \nabla_{y / k}=\underbrace{Q}_{\text {rotor. }}=Q_{U}^{5}=\underbrace{J}_{V} Q
$$

rigid motion we just have rotatui(Q) + transian but ho

$$
\begin{array}{ll}
C=F^{-t} F=Q^{t} Q=I \rightarrow U \in J \\
B=f F^{t}=Q Q^{t}=I \rightarrow V=I & \begin{array}{l}
\text { stretching } \\
\\
U=V=I
\end{array}
\end{array}
$$

2. Rotation
3. Translation Left paid
right path
Right patch
1) Stretch

$$
U d x
$$

2) Rotation R
when $d x=|d x| e_{i}^{s} \rightarrow$ $U d x=\lambda_{0}^{i} d x$

$$
d y=F d x=R U d x
$$

$$
d y=1 d x=K U d x
$$

3) Riǵid translatioi

Summary:

$$
\longrightarrow_{\text {Left }}^{\text {Rish }} \text { rotali } \underset{\text { transdah }}{\longrightarrow}
$$

1. trandadic

Streichuy

2. Rotation

3. Stretching (V left stretch tense)

$$
F=\nabla_{y_{/ x}} \quad F=\underbrace{R U=V R}_{\substack{\text { gomel } \\ f \text { fowles }}}
$$

$$
U \neq V \text { in genet }
$$

$$
R \cup \notin \cup R
$$

any?
since $A B \neq 3 A$ we have differed stretch tensors

Let's compare this with small deformation gradient theory

unlike multiplicali $R \cup \notin \cup \mathbb{R}$

Theorem 128:

1. C. V^{2}
$B=V^{2}$
2. $V=R \cup R^{t}$

$$
U=R^{ł} V R
$$

3.B. $R C R^{+}$ $C=R^{+} B R$

$$
\begin{aligned}
& \text { pref } \quad \begin{array}{r}
F=R U=V R_{1} \times R^{-1}
\end{array} \rightarrow \quad V=R U R^{-1} \quad \rightarrow \quad V=R U R^{+} \\
& V \cdot V=\left(R \cup R^{\dagger}\right)\left(R \cup R^{\dagger}\right)=R \cup(\underbrace{R k}_{j}) \cup R^{\dagger}=R U^{2} R^{t}=R C R^{t} \\
& \text { Interpretali } \\
& \text { U, } C \text { hore eqgenvectors } e_{i} \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{e_{i}^{*}}{V\left(R_{i}^{e}\right)}=\lambda_{i}\left(R_{e}^{e}\right)[V]^{* *}=\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
n & e^{*} & \lambda_{3}
\end{array}\right] \\
& \text { egenvalues of } v_{8}^{B} C^{X} C^{X} \text { are idented } \\
& \text { eigenvectors of } \frac{V}{B} \text { are argenvecturs of } V \text { Retanded wivR }
\end{aligned}
$$

- e_{i}^{R} is egenvecter i for $\underset{\text { premultipl by } R \quad V e_{i}^{i}=\lambda_{i} e_{i}^{N} \quad \text { no sumnction } i ~}{U}$

$$
\begin{aligned}
& R V_{V_{I}^{R T R}}^{e_{i}^{+}}{ }_{i}=\lambda R e_{i}^{*} \\
& \left.\begin{array}{l}
\left(R^{+} \cup R^{+}\right)\left(\operatorname{Re}_{i}^{\top}\right)=\lambda_{i}\left(\operatorname{Re}_{i}^{p}\right) \\
V=R \cup R^{+}
\end{array}\right\} \rightarrow \quad V R e_{i}^{*}=\lambda_{i} e_{\underline{i}}^{*}
\end{aligned}
$$

An example of left and right deformation maps (I'm not showing translation) for a particular fiber dx $=\varepsilon e_{\text {, }}^{\text {, }}$

Right path
eiganvedr

Whether we go through the right or the left path
Eigenvectors of U map to elgon vectors of V stretch by eigenvalues λ (af URV)

Expansion of C and other strain tensors

$$
C=F^{t} F
$$

right Cavil Green $\underset{\text { temblor math }}{ }$
$F=\nabla_{y}$

$$
y=x+u \longrightarrow \text { displacement }
$$

$$
=\nabla_{(u+x) / x}=\nabla_{u_{x}+5}
$$

H displacmand gradient
$F=H+I, \quad C=F^{t} F=(H+I)^{t}(H+I)=\left(H^{t}+I\right)(H+I)=$

Det. 81 dx $\underset{\sim}{2} \frac{d g d x}{d x}$
$G_{=}^{d x}=\frac{1}{2}\left(C^{d x+I d y}=\frac{1}{2}\left(H^{+} H+H+H^{t}\right)\right.$
Green-SI Venawt
strain

$$
\begin{aligned}
& =\underbrace{\frac{1}{2}\left(H+H^{t}\right)}_{E}+\frac{1}{2} H^{t} H \\
& G=E+\frac{1}{2} H^{t} H
\end{aligned}
$$

$E=\frac{1}{2}\left(H+H^{t}\right)$ smal deformaki gradent (H) / infinitesimad strain tenser

Indicial notation formulas for C, G, and E

$$
\begin{aligned}
& C_{i j}=\left(F^{t} F\right)_{i j}=\left(F^{-1}\right)_{i n} F_{m j}=F_{m i} F_{m j} \\
& F_{m i}=\frac{\partial y_{m}}{\partial x_{i}}=\frac{\partial\left(u_{m}+x_{m}\right)}{\partial x_{i}}=\frac{\partial u m}{\partial x_{i}}+\frac{\partial x_{m}}{\partial x_{i}}=H_{m i}+\delta_{m i} \\
& F_{m j}=H_{m j}+\delta_{m j} \\
& C_{j j}=\left(H_{m i}+\delta_{m i}\right)\left(H_{m j}+\delta_{m j}\right)= \\
& \\
& H_{m i} H_{m j}+\underbrace{}_{m i} H_{m j}+\underbrace{H_{m i} \delta_{m j}+\delta_{m i} \delta_{m j}}
\end{aligned}
$$

$$
\begin{aligned}
& H_{m i} H_{m j}+\underbrace{\delta}_{H_{i j}} H_{m i} H_{m i}+\underbrace{H_{m i} \delta_{m j}}_{H_{j i}}+\delta_{m i} \delta_{m j}
\end{aligned}
$$

$$
\begin{aligned}
& G=\frac{C-5}{2} \rightarrow G_{i j}=\frac{1}{2}\left(H_{i j}+H_{j i}+H_{m i} H_{m j}\right) \\
& E=\frac{H+H H^{\dagger}}{2} \quad E_{i}=\frac{H_{i j}+H_{j i}}{2}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u}{\partial x_{i}}
\end{aligned}
$$

Rigid body mot ~ $\sim C, G, E=$?

$$
\begin{aligned}
& y=Q x+c \rightarrow F_{0} V_{\nu_{1}}=Q \\
& C=F^{+} F=Q^{+} Q=I \\
& \frac{U_{2} V_{2} C, B=I}{\text { rigi md- }}
\end{aligned}
$$

$$
\begin{align*}
& E=G-\frac{1}{2} H^{t} H=O-\frac{1}{2} H^{t} \vec{H} \\
& \text { for a rigid lodi } E \neq 0
\end{align*}
$$

but it's close to zero ($O\left(\varepsilon_{\varepsilon}^{2}\right.$) if $H=O(\varepsilon)$)

