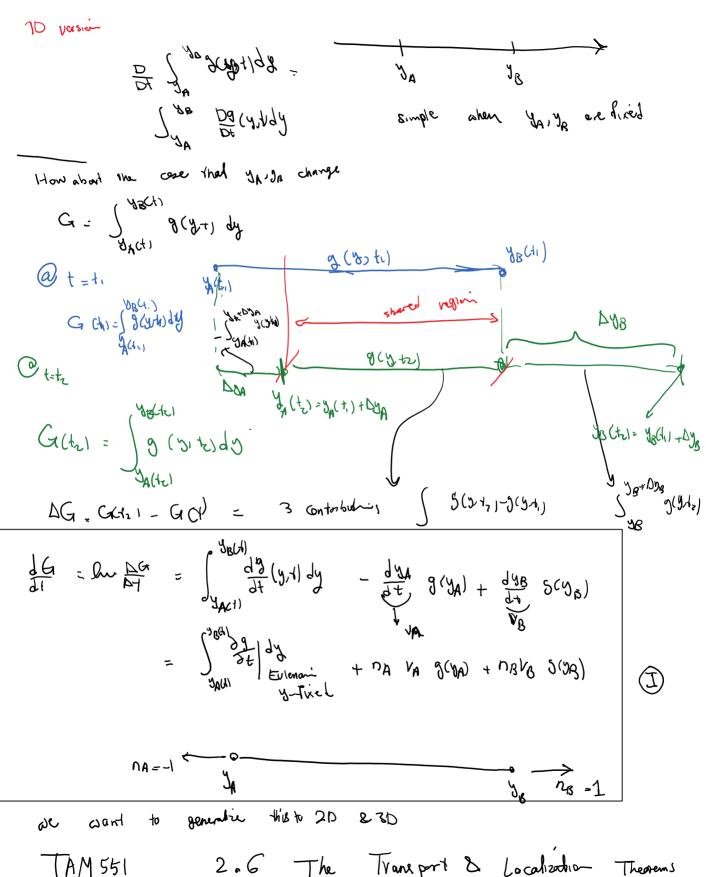
Thursday, November 4, 2021 2:49 PM

How do we calculate the rate of integrals whose domain and integrand are both time-dependent?

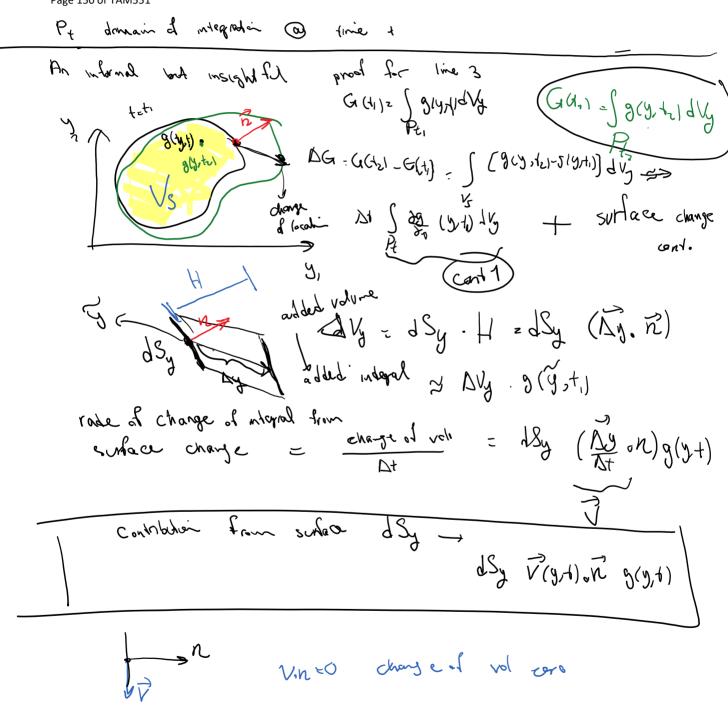


Theorem 145 (Transport Theorem) Let $g \in C^1(\Im, \Re)$ be a spatial scalar field. Then

$$\begin{split} \frac{d}{dt} \int_{\mathcal{P}_t} g(\mathbf{y},t) \, dV_y &= \int_{\mathcal{P}_t} \left[\frac{\partial g}{\partial t}(\mathbf{y},t) + g_{,i} \! \big(\mathbf{y},t \big) \hat{v}_i(\mathbf{y},t) + g(\mathbf{y},t) \hat{v}_{i,i}(\mathbf{y},t) \right] dV_y \\ &= \int_{\mathcal{P}_t} \left\{ \frac{\partial g}{\partial t}(\mathbf{y},t) + \left[g \hat{v}_i \right]_{,i} (\mathbf{y},t) \right\} dV_y \\ &= \int_{\mathcal{P}_t} \frac{\partial g}{\partial t}(\mathbf{y},t) \, dV_y + \int_{\partial \mathcal{P}_t} g(\mathbf{y},t) \left[\hat{\mathbf{v}}(\mathbf{y},t) \cdot \mathbf{n}(\mathbf{y},t) \right] dA_y, \end{split}$$

where $\mathbf{n}(\mathbf{y},t)$ is the outward unit normal to $\partial \mathcal{P}_t$ at \mathbf{y} .²⁰

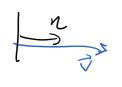
Page 150 of TAM551



V.n = 1V1

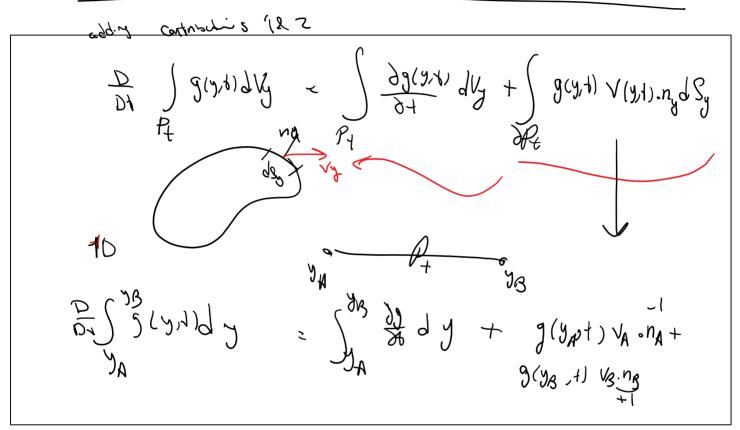
highest rade of

CM Page 2

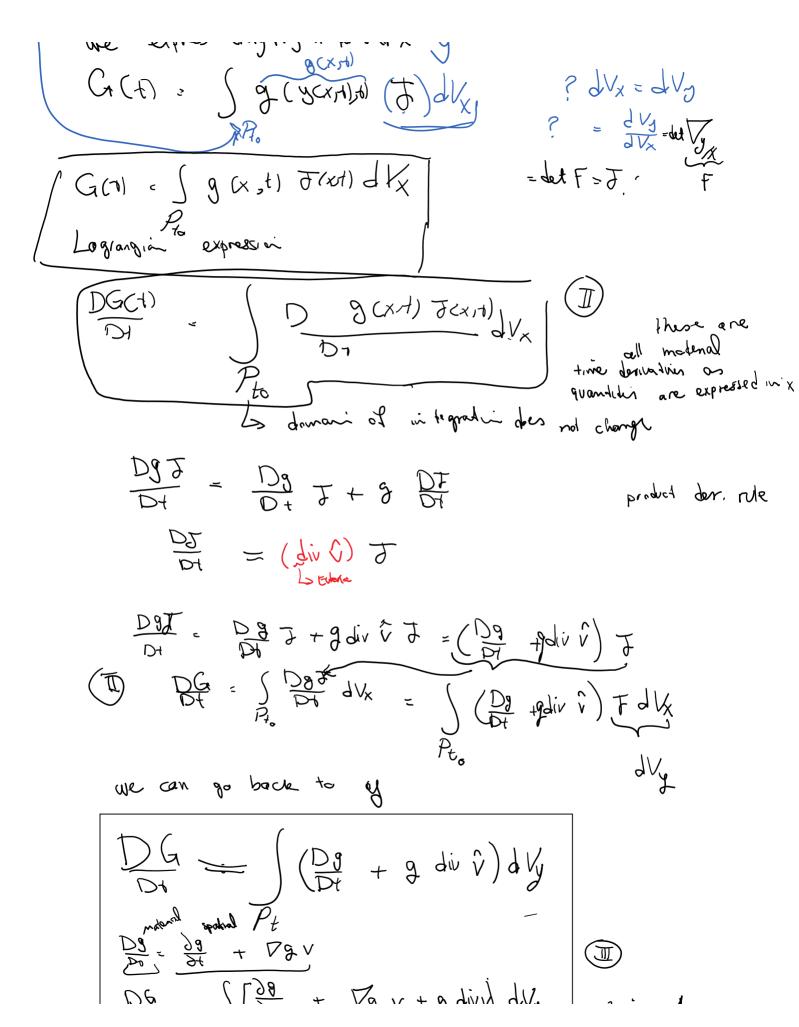


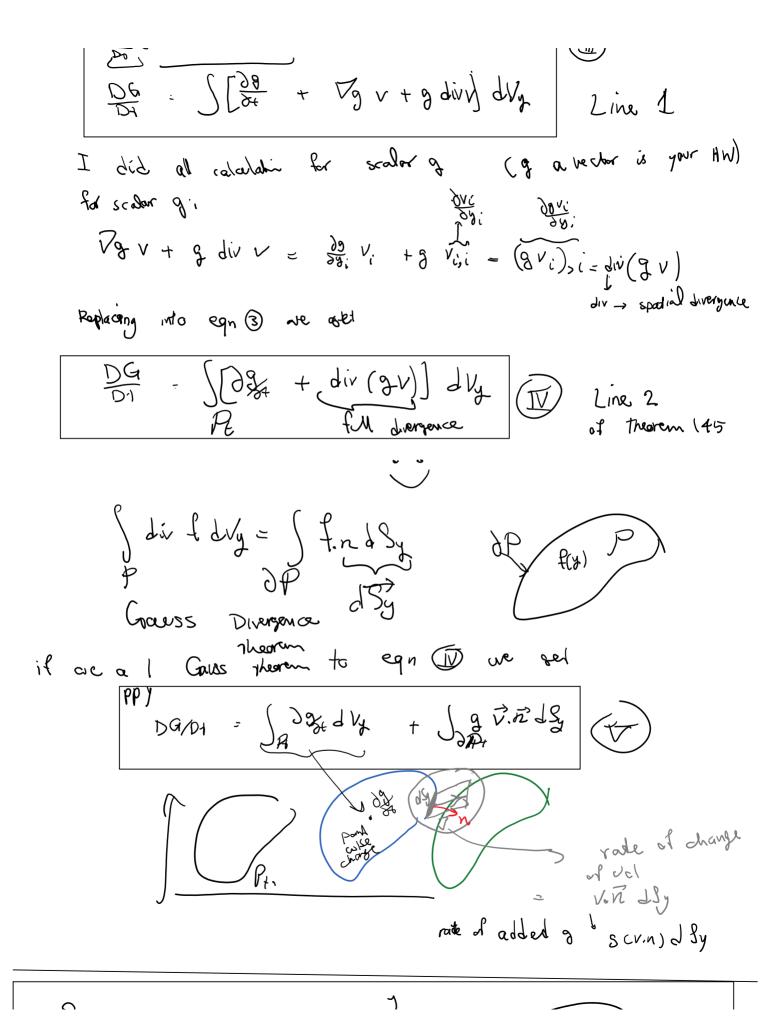
V.n = (V) highest rade of adding to volume

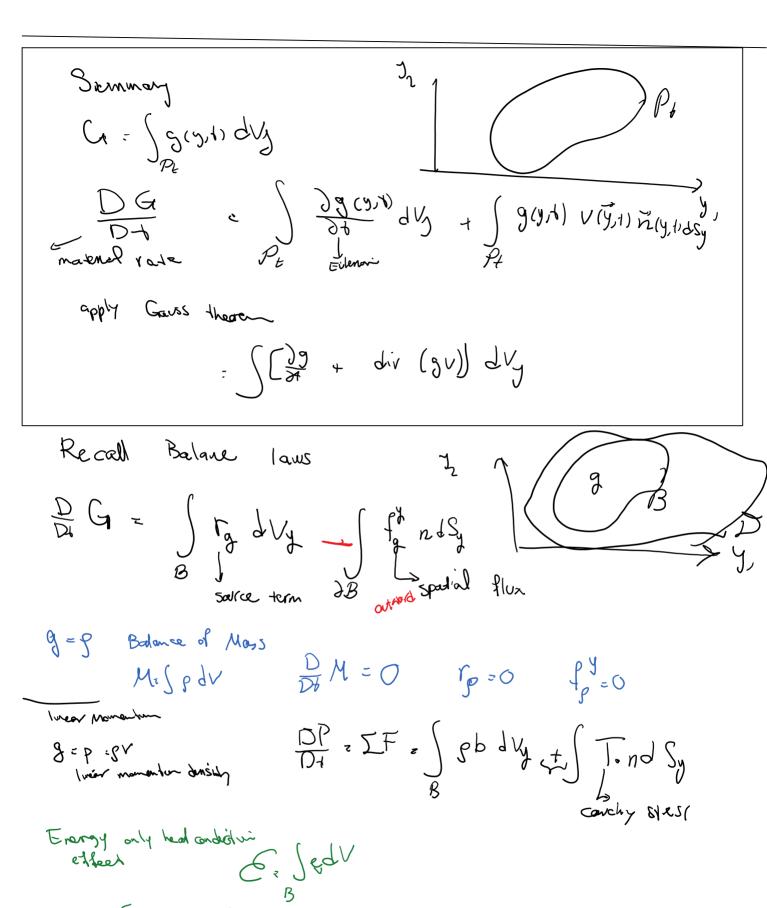
for the whole surface, constitute from charge of volume are



Formal Prod. Evloring expression Gen = (gentld by X < > > > 7 127 map reference y = f(x1) we express everything in turns of x 2 2/2 = 2/2







DE = SQ d Vy = Sq. nd Sy B Is head source 12 Is head flux redow

Summany	1	,	
8	5	fy \	Balance law name
9	0	O	Ma SS
P-97	PP	ーT	Linear monant
ev = cv T	I Q	l q	therry (only head conducti)

Putting everything to sother

tod "diffuse advective flux"