https://rezaabedi.com/teaching/continuum-mechanics/

Course assignments are mostly from
 TAM551.pdf

Abeyaratne_Brief Review of Some Mathematical_ElasticSolids-Vol.1-Math.pdf
Abeyaratne_Continuum Mechanics_RCA_Vol_II.pdf

Grade breakdown:
Mostly HW assignments plus a term project

9 HW assignments (about 80\%)

Term project 1: Includes (About equal weights are allocated to each part)

- 1) An up to 4 pages paper/proposal(including references if any) on a topic related to continuum mechanics. The format of the document is either that of a

O Research article mostly focusing on introducing a topic of interest and presenting related results. Suggested sections are abstract, introduction, formulation, results (can present results from existing literature, doesn't need to be from your own research), conclusion.
O Research proposal that basically introduces a problem, discusses current state of the art and research gaps, and finally proposes a new approach to address the mentioned research gaps. Suggested sections are (abstract), introduction (why this problem is important and what is the main contribution of the proposed work), background (state of the art and what are the existing gaps and challenges), objective (describing the goal and objectives of the research), research tasks (what is proposed to be done). Some optional sections are intellectual merits and broader impacts as often required in research proposals.

- 2) Presentation of the article on the "Presentation day". Each student will have about 15 minutes to present the material in the article (and related to it) to the entire class.
(i) kinematics (geometrical description of deformation);
(ii) basic balance laws; and

$$
\begin{aligned}
& \text { guide by } \Delta x \\
& \left.\frac{f(x+\Delta x)-f(x)}{\Delta x}=0\right\} \\
& \text { ltd } 5 x \rightarrow 0 \\
& \text { (eq) } E^{\prime}(x)=-9 \\
& \text { Difforertial equation } \\
& \text { stress } \\
& \begin{array}{l}
\left.6=\begin{array}{l}
F \\
b_{1} \ldots 1
\end{array}\right)
\end{array} \\
& \Rightarrow \quad F=A \sigma(p q r)
\end{aligned}
$$

First section:
Mathematical background:

- Indicial notation
- Vector spaces
- Tensors

Indicial notation:
consider a vector A

$$
A=\left(A_{1}, A_{2}, A_{3}\right)
$$

for this vector $A_{1}>0, A_{2}>0, A_{3}>0$

Free indices appear once per expression and they imply that the index takes values from 1 to d (e.g., 1, 2, 3 in 3D)

We deal with addition and subtractions of terms as follows:

$$
\forall_{i \in\{1,2,3\}} a_{i}+A_{i j} b_{j}+c_{i 2} d_{2}=\frac{d d_{i} k}{d x_{k}}+\cos \left(e_{i}\right)+\underbrace{2}_{i}+5
$$

Other examples:
The following expression does not make sense

$$
\vec{a}
$$

Examples of vector operations and products

$$
\begin{aligned}
& \vec{a}=\vec{b} \quad \forall i \quad a_{i}=b_{i} \quad\left(a_{i}=b_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a^{t} b=\left[a_{1} \quad a_{2} \quad a_{3}\right]_{\times 3}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]_{3 x 1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& \text { or } a_{k}=a_{k}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right], B_{33}=\cdots \\
& C=A+B \\
& \text { Much easier to write } \\
& C_{i j}=A_{i j}+B_{i j} \\
& \text { this is a shorthand for }
\end{aligned}
$$

$$
\begin{aligned}
& \sum a_{i}+b_{j}>0 \quad \text { I caended to state } \\
& \left.\begin{array}{ll}
a_{1}+b_{1}>0 \\
a_{2}+b_{2}>0 \\
a_{3}+b_{3}>0
\end{array}\right]=\begin{array}{l}
a_{i}+b_{i}>0 \\
\\
\\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

$$
a^{t} b=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]_{x_{3}}\left[\begin{array}{l}
r_{2} \\
b_{3}
\end{array}\right]_{3 x 1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { scalar }
$$

inner proud $\overrightarrow{a_{0}}, \vec{b}=a^{t} \bar{b}=\sum_{i=1}^{3} a_{i} b_{i}$
(1)

$$
a b^{t}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right]
$$

\rightarrow shorthand with indicial notatimi $\quad(a \otimes b)_{i j}=a_{i} b_{j}$
(1) $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sum_{i=1}^{3} a_{i} b_{i}$
index i appearing trice implies summation
Lad convention
repeated index implies summation
$\lambda^{\text {dummy }}$.n de
Example

$$
\begin{aligned}
a-b & =a_{i} b_{i} \\
& =a k b k \\
& =a \alpha b \alpha
\end{aligned}
$$

Einstein summaticiciconveniuf

$$
a_{k} b_{k}=\sum_{k=1}^{3} a_{k} b k=\sum_{i=1}^{3} a_{i} b_{i}
$$

$$
\begin{array}{ll}
a_{i} \geq 0 & \text { ai) } p i \geq 0 \\
b_{1} \geq 0 \\
a_{i}+b_{i}>5 & \text { dummy index } \\
\hline
\end{array}
$$

More examples

$$
\begin{aligned}
& C_{3 \times 3}=\left[\begin{array}{ccc}
c_{11} & C_{2} & c_{3} \\
c_{23} & c_{33}
\end{array}\right] \\
& \text { Meaning of } \underset{i l}{ } C_{i i}>0 \quad \equiv \quad C_{11}+C_{22}+C_{33} \geq 0
\end{aligned}
$$

ant to $د \sim y$ each diagonal component is ≥ 0

What if we coont to suy each diagonal component is ≥ 0

- $\mathrm{c}_{i j}>0 \times$ civon. cas>0 qeqns
- Cii>0 $\quad C_{11}+(22+(33) C$
when summater conventuc is not implied

$$
\left[\begin{array}{ll}
C_{i i}>0 & (\text { no summatioi convention }) \\
C_{i i}>0 \\
C_{i(i)}>0
\end{array} \quad \begin{array}{l}
\text { explari } \frac{v}{} \text { ov } v(i) \\
\text { mean no summati on } i
\end{array}\right.
$$

$$
b=A a
$$

vecur matix (capital refter)

$$
\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{lll}
A_{1} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{aligned}
\operatorname{son} m+x+b & =A_{1} a_{1}+A_{12} a_{2}+A_{13} a_{3} \\
b_{2} & =A_{21} a_{1}+A_{22} a_{2}+A_{23} a_{3} \text { dummy indax }
\end{aligned} \\
& b_{3}=A_{31}+A_{32}+A_{33} a_{3} \\
& \begin{aligned}
\forall c \in\{1,2,3\} & b_{i}
\end{aligned}=\underbrace{\sum_{j=1}^{3} A_{i j} b_{j}}_{b_{i}} \\
& \begin{array}{r}
b_{i}=A_{i j} a_{j} \\
\equiv b=A_{a}
\end{array}
\end{aligned}
$$

$b=A a \quad$ corte c in terms of a using indcicial notodion $c=B b$

$$
c=\underset{b=A a}{B b}, \quad C=\underbrace{(B A) a}_{\text {call }} \text { mis matrix } C
$$

How are compreunts of $C=B A$ are related to components of A\&B! need to change wis to $j \quad i \rightarrow j$
b. $A a \quad: \quad b_{i}^{T}=A_{i j} a_{i} \longrightarrow \quad \underset{b_{j}}{i \rightarrow j} A_{i j} a_{j}\left(3^{\prime} j\right) X$

$$
(3),(4) \Rightarrow c_{i}=B_{i j}\left(A_{j k} a_{k}\right)
$$

$$
\begin{aligned}
& c_{i}=\left(B_{i j} A_{j k}\right) a_{k} \\
& c=\underbrace{(B A)}_{C} a \quad c_{i}=C_{i k} a_{k}\} \Rightarrow C_{i k}=(B A_{i k}=\underbrace{A_{j k}}_{i j j}
\end{aligned}
$$

(5) $(B A)_{i k}=B \cdot \underbrace{j K_{j}}_{\text {sumnaik }}$

$$
\begin{aligned}
& B A=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right]\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
& (B A)_{23}^{i} r_{1}^{k}=B_{21} A_{13}+B_{22} A_{23}+B_{23} A_{33}=\sum B_{2 j} A_{j 3}
\end{aligned}
$$

