Eigenvalue problem and why often indicial notation does not work for eigen-value, eigen-vector expressions

$n \times n$ square marisa

n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

for eigenvectors

Back to $(d=3)$; 3×3 matinees Assume A is liagonalrably (we have 3 independent merger
 eigenvectors $u^{(1)}, u^{(2)}, u^{(2)}$
(1) $\left\{\begin{array}{l}A u^{(1)}=\lambda^{(1)(1)} \\ A u^{(2)} \\ A u^{(3)}=\lambda^{(2)} u^{(2)} \\ \lambda^{(3)} u^{3)}\end{array}\right.$

Can we write this expression using indicia notation?
Summatir canventiv bes not apply here

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
\lambda_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
v_{11}^{(1)} \\
v_{2}^{(1)} \\
v_{3}^{(1)}
\end{array}\right]=\lambda^{(1)}\left[\begin{array}{l}
u_{1}^{(1)} \\
v_{2}^{(1)} \\
u_{3}^{\prime \prime}
\end{array}\right)
$$

$$
\frac{A u_{1 \text { index } i}^{(i)}}{J \text { here }} \underbrace{(i)}
$$ zundias i here it implies summativ $\lambda^{\prime \prime} u^{(n)}+N^{(n)} u^{(2)} \lambda_{u^{\prime}}^{(2)_{(j)}^{\prime}}$

(8) says

(3)
diagonal matrix on the right \rightarrow multiply column \mathcal{E} diagonal natia au the left o \rightarrow multiply rows
eigenvalue matrix diagonal i is eger vector:
column i is eger vector i
(2)

$$
\begin{aligned}
& A \cup=U S \\
& A \cup V^{-1}=U D J^{-1}
\end{aligned} \quad \Longrightarrow
$$

diagonal i is egger vector: multiply $b U^{-1}$ on the right
(3)

dagondizing a matrix

$$
\begin{aligned}
& \text { Side note: Why diagonalizing a matrix is so important? } \\
& \text {. } A^{2}=\left(U \Lambda J^{-1}\right)\left(U \lambda V^{-1}\right)=U \lambda(\underbrace{U^{-1} U^{U}}_{\square}) \lambda U^{-1}=U \lambda^{2} U^{-1}, \lambda^{2}=\left(\begin{array}{cc}
\left(x_{1}^{2}\right. & a^{2} \\
\lambda^{2} & \\
& \left.\lambda^{2}\right)^{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp (A)=U \\
& \exp \left(\lambda ^ { (1) } \operatorname { e x p } \left(C^{(3)} \mid U^{-1} \quad \exp (y)=e^{y}\right.\right. \\
& f(A)=V\left(\begin{array}{ll}
f\left(\lambda^{(1)}\right) & f(\lambda) \\
& \\
& \\
& f\left(\lambda^{(n)}\right)
\end{array}\right) V^{-1} \quad \vec{A}^{\prime}=U A^{-1} U^{-1}
\end{aligned}
$$

Back to indicia notation problems with eigen problems
$A=U \cap U^{-1} \quad$ if $\quad A$ is symmetric $\xrightarrow[\text { well shew }]{\text { then }} U^{-}=U^{t \rightarrow}$ transpose
(5) for spmmethis λ

$$
\begin{aligned}
& A=U \wedge U^{t} \quad A=\left[v^{(1)}\left|v^{(2)}\right| J^{(3)} \left\lvert\,\left[\begin{array}{ll}
\left(i^{(1)}\right. & \lambda^{(2)} \\
\lambda^{(3)}
\end{array}\right]\left[\frac{v^{(1)}}{\frac{v^{(2)}}{\delta^{(3)}}}\right]\right.\right. \\
& A=\lambda^{(1)} u^{(1)} \otimes u^{(1)}+\lambda^{(2)} u^{(2)} \otimes u^{(2)}+\lambda^{(3)} u^{(3)} \otimes_{1}^{(3)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.A=\lambda^{(1)} u^{(1)} \otimes u^{\prime}\right)+\lambda^{(2)} u^{(2)} \otimes u^{(y)}+\lambda^{(3)} u^{(3)} \otimes v^{(3)} \\
& \text { (6) } \begin{array}{l}
\text { sm-A } \\
A=\sum_{i=1}^{3} \lambda^{i} u^{(l)} \otimes u^{i}(i)
\end{array} \quad a \otimes b=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{5}
\end{array}\right)=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{1} & a_{2} b_{2} & a_{2} \\
a_{33} & b_{3} \\
\varepsilon_{3} b_{2} & a_{3} b_{3}
\end{array}\right]
\end{aligned}
$$

can we use the summ of conventr?
$A=\lambda^{(i)} u^{(i)}(x) u^{(i)}$ ave cannd drap I here "cannd use summali conrenti"" occause were are 3 indicis i on the RAS

Kronecker's delta

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

$d=3$

$$
\delta=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=J_{\substack{\text { matrix }}}
$$

So, delta is the identity matrix
Propertive of δ :

1. $\delta_{i \underline{i}}=1$
no sumnali convent.
2. $\delta_{i i}=\delta_{11}+\delta_{42}+\delta_{33}=3$
(d in dinensind)
3. $\delta_{i j} b_{j j}=\delta_{i 1} b_{1}+\delta_{i 2} b_{2}+\delta_{i 3} b_{3}=b_{i}$

$$
\begin{aligned}
& \text { e.g } i=1 \quad \int_{j}^{\delta_{11}} b_{1}+\underbrace{\delta_{12}}_{0} b_{2}+\frac{\delta_{13}}{0} b_{3}=b_{1} \rightarrow 1 \\
& i=2 \quad \frac{\delta_{21}}{0} b_{1}+\delta_{12} b_{2}+\underbrace{\delta_{23}}_{0} b_{3}=b_{2} \\
& i=3 \\
& b_{3}
\end{aligned}
$$

(7)

$$
\begin{aligned}
& \delta_{j i} C_{k j j p}=\delta_{i} C_{k l} C_{k l} p=C_{k l} p \\
& \operatorname{sij}_{1} C_{k l j} i=C_{k l i i} \quad\left(=C_{k l 11}+C_{k l 27}+C_{k l 33}\right) \\
& c=A a+5 a \\
& c_{i}=(A a+5 a)_{i}=(A a)_{i}+5 a_{i} \\
& ={\bar{A} i j a_{j}}^{\left.\right|_{\text {not the same }} \dot{\sim} \quad \text { trick to change }} \quad a_{i} \text { to } a_{j}
\end{aligned}
$$

nate $a_{i}=\delta_{i j} a_{j}=A_{i j} a_{j}+5 \delta_{i j} a_{j}^{j}=\left(A_{i j}+5 \delta_{i j}^{i j}\right) a_{j}$

$$
\begin{array}{r}
C_{i}=\left(A_{i}^{\sim}+5 \delta_{i j}\right) a_{j} \\
c=C^{\prime} a_{i} \quad C_{i}=C_{i j} a_{j}
\end{array}
$$

$c=C_{a}$ where $C_{j}-A_{i}+5 \delta_{j}$

$$
\text { or } C=A+56
$$

side note ester day $c=A a+5 I a=(A+55) a$

Defintion
（8）

6 coses where $i, 5, k$ are dstrich valves from sod $\{1,2,3\}$

How to choore 1 or -1 for the remainy 6 coos $i \neq j$ ，来水 k才i

1 bear－1）

$$
\epsilon_{312}=? \quad \epsilon_{R 3}^{R}
$$

Determinant of A :
$\operatorname{ser} A=$ $+(-1)^{++3} A_{B}$ dat $\left[\begin{array}{ll}A_{71} & A_{22} \\ A_{31} & A_{32}\end{array}\right]$

$$
\begin{align*}
& A_{11} A_{22} A_{33}-A_{11} A_{23} A_{32} \\
& -A_{2} A_{21} A_{33}+A_{12} A_{23} A_{31} \\
& +A_{13} A_{21} A_{32}-A_{13} A_{22} A_{31}
\end{align*}
$$

write only

$$
\left.\frac{1}{\epsilon_{123}} A_{11} A_{22} A_{33}+\frac{-1}{E_{132}} A_{11} A_{21} A_{32}\right)
$$

the never
duns the
dims tons
$\operatorname{det} A=E_{i j K} A_{1 i} A_{2 j} A_{3 k}$
$=e_{i j} k A_{i 1} A_{j 2} A_{k 3}$

