Eigenvalue problem and why often indicial notation does not work for eigen-value, eigen-vector expressions

madices (d=3); 313 Back

eigenvectors

Assume A is lagonalizable (we have 3 independent agents in coor)

(1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7)

(8)

(8)

(9)

(9)

(9)

(9)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(1 $\alpha^{(1)}$, $\alpha^{(2)}$, $\alpha^{(3)}$

column

Can we write this expression using indicial notation?

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{3} \end{bmatrix} = \begin{pmatrix} (1) \\ U_{1} \\ U_{2}^{\dagger} \\ U_{3}^{\dagger} \end{pmatrix}$$

it implies 1, (1) + (6) (12) (5) (2)

Back to indicial notation problems with eigen problems

A =
$$\bigcup N \bigcup^{-1}$$
 if A is symmetric transposed then $\bigcup^{-1} = \bigcup^{-1} \bigcup^{$

A = $\begin{pmatrix} (1) & (1) & (2) & (3)$

Kronecker's delta

$$Sij = \begin{cases} 1 & i = 0 \\ 0 & i \neq j \end{cases}$$

So, delta is the identity matrix

Properties of S:

$$4. Sii = 1$$

d53

3. Sixbj =
$$5i1b1 + 5i2b2 + 5i3b3 = bi$$

e.g $i=1$
 $5i1b1 + 5i2b2 + 5i3b3 = b1$
 $i=2$
 $5i1b1 + 5i2b2 + 5i3b3 = b2$
 $i=3$
 $i=3$

$$\begin{array}{cccc}
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 \\
6 & 5 & 5 & 5
\end{array}$$

arde C : (p)(a)

$$c = Aa + 5a$$

$$c_i = (Aa + 5a)_i = (Aa)_i + 5a_i$$

$$= A_{ij}a_j + 5a_i$$

$$= A_{ij}a_j + 5a_i$$

$$= A_{ij}a_j + 5a_i$$

$$= A_{ij}a_j + 5a_i$$

=
$$Aijaj + 5ai$$

Frick to change

at to aj

Aijaj + $58ijaj = (Aij + 58ij)aj$

$$c_i = (A_i) + J S_{ij} A_j$$

 $c_i = (A_i) + J S_{ij} A_j$
 $c_i = (A_i) + J S_{ij} A_j$

side note esser day c= Aa + 5 Ia = (A+55)a

Permutation or Alternating symbol

$$3x3x3 = 27$$

components

e. $y \in E_{11}$
 E_{13}
 E_{14}
 E_{15}
 E

Uses of permutation symbol:

- Determinant of a matrix
- Inverse of a matrix
- Cross product
- Curl

