$$
\begin{aligned}
& \text { Ill show that for } \\
& \text { an arhagonal basis }
\end{aligned}
$$

Inner product: Indicial representation

$u \cdot v=u_{1} v_{1}+u_{r} v_{2}+u_{3} v_{3}$

$$
=u_{i} V_{i^{-}}
$$

- Definition A is ideal in that it does not need a coordinate system so clearly that value of inner product number is INDEPENDENT of coordinate system => scalar
- Definition B uses a coordinate system and to show that the value of u.v is independent of coordinate system choice, we need to prove that it's value does not change from one coordinate system to another (not the best approach)
Whenever possible, make the definitions independent of a coordinate system $->$ we automatically deal with tensors.
Assume we had used deal B for inner product \rightarrow meld to prove real It's a seder

$(\underbrace{Q_{m i} Q_{i n}^{t}} u_{m}^{\prime} u_{n}^{\prime}=(\underbrace{Q_{m n}^{t} u_{m}^{\prime} u_{n}^{\prime} \quad A=B C=B=B} \quad \quad A$

$$
\text { for owhenormal coordinate } \quad A_{m n}=B_{m i} C_{i}
$$

syders are use now Qt:

$$
\delta_{m n} u_{m}^{\prime} u_{n}^{\prime}=u_{n}^{\prime} u_{n}^{\prime}=u_{i}^{\prime} v_{i}^{\prime}
$$

$\underbrace{}_{m n} \underbrace{}_{m} u^{\prime}=u_{n} u_{n}^{\prime}=u_{i}^{\prime} v_{i}^{\prime}$
I proved $\quad U_{i} v_{i}=U_{i}^{\prime} \cdot V_{i}^{\prime}$

BTW, why the value of inner product u.v is equal to wi vi?

$$
\begin{aligned}
& u \cdot v=\left(u_{1} e_{1}+v_{2} e_{2}\right) \cdot\left(v_{1} e_{1}+v_{2}^{l} 2\right) \\
& =\left(u_{1} e_{1}\right) \cdot\left(v_{1} e_{1}\right)+\left(u_{2} e_{2}\right) \cdot\left(u, e_{1}\right) \\
& +\left(u_{1} l_{1}\right) \cdot\left(v_{2}^{e} e_{2}\right)+\left(u_{2} l_{2}\right) \cdot\left(V_{e} e_{2}\right) \\
& =u_{1} v_{1} e_{1} \cdot e_{1}+u_{2} V_{1} e_{2} \cdot e_{1}+ \\
& u_{1} v_{2} e_{1} e_{2}+u_{2} v_{2} e_{n} \cdot e_{2} \\
& \text { condinate } \\
& \text { sysden }
\end{aligned}
$$

$$
g_{i j}=e_{i} \cdot l_{j}
$$

g is called metric matrix

$$
\begin{aligned}
& \text { summany } \\
& u \cdot v=u_{i} v_{i}=\left[\begin{array}{lll}
V_{1} & u_{2} & v_{3}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
v_{3}
\end{array} \underset{e_{1}}{\stackrel{e_{4}}{\rightarrow}}\right. \text { ortheoenal }
\end{aligned}
$$

$$
\begin{aligned}
& g_{i j}=e_{i} \cdot e_{j} \\
& \text { chlognal } \\
& \text { systen }
\end{aligned}
$$

KittelCharles-IntroductionToSolidStatePhysics8ThEd.pdf
Examples of non-orthogonal coordinate systems for solid lattices

2nd order tensors = Linear operators
Assume that V and W are two vector spaces and the function L takes vectors from v in V to W

$$
V \xrightarrow[L(v)]{L} w
$$

if must sacristy

1) $\quad \forall v_{1} \& v_{2} \in V \quad L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{1}\right)$
2) $\forall \lambda \in R \& v_{E} E V \quad L\left(\lambda v_{1}\right)=\lambda L\left(v_{1}\right)$
or In shat

$$
L(\alpha u+v)=\alpha L(u)+L(v)
$$

Examples:

$$
f(x)=c x
$$

Example 2

$$
\operatorname{det} 2-1
$$

bunt opal for all u\&k

$$
\begin{aligned}
& \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& L(u)=|u|
\end{aligned}
$$

bur not equal ter all " Δx
No a lingo lunch
Example 3

$a=(1,2)$
$a_{0}(1,2)$

$$
L_{a}(u)=a \cdot u
$$

Ital this L of a os the function is defraud based in a Is la a liner funch?

$$
\begin{equation*}
L_{a}(u)=a_{1} u=a_{1} u_{1}+a_{2} u_{2}=u_{1}+2 u_{2} \tag{4}
\end{equation*}
$$

I need io show $L_{a}(\alpha u+v)=\alpha_{a}(u)+L_{a}(v)$
let's check this

$$
\begin{aligned}
L_{a}(\alpha u+v) & =(\alpha u+v)_{1}+2(\alpha u+v)_{2} \\
& =\alpha u_{1}+v_{1}+2 \alpha u_{2}+2 v_{2} \\
& =\alpha\left(u_{1}+2 b b_{2}\right)+\left(v_{1}+2 v_{2}\right) \\
& =\alpha L_{a}(u)+L_{a}(v)
\end{aligned}
$$

In fact, any linear function from $R_{\text {to }}^{d} R$, can be expressed as an inner product

\Rightarrow there is a vector a $\quad \begin{aligned} & L(u) \text { is limen } R^{3} \rightarrow R \\ & \rightarrow \text { chat }\end{aligned}$

$$
L(u)=a \cdot n
$$

$$
L(u)=a \cdot n
$$

There is one remaining point to consider before proceeding on to secondorder tensors. That is, the inner product allows us to interpret a (Euclidean) vector as a linear operator that maps a vector into a real number (scalar). In fact, this is the defining property of a first-order tensor, and vectors are indeed first order tensors. To illuminate this point, let \mathcal{V} be the set of all vectors in some Euclidean point space \mathcal{E}. Now consider a specific vector $\bar{a} \in \mathcal{V}$, where the overbar indicates that we hold \bar{a} fixed. We can define a function $f_{\overline{\mathrm{a}}}$ that maps a vector into a scalar by taking the inner product of $\overline{\mathbf{a}}$ and any vector $\mathbf{b} \in \mathcal{V}$. That is,

$$
f_{\overline{\mathbf{a}}}(\mathbf{b}) \equiv \overline{\mathbf{a}} \cdot \mathbf{b} .
$$

A review of the properties of the inner product shows that $f_{\overline{\bar{a}}}$ is indeed a linear operator. In fact, the Riesz representation theorem states that every linear function on \mathcal{V} to \Re can be represented in this fashion (by varying our choice of the fixed vector $\overline{\mathbf{a}})$! We use a similar approach in the next section to define second-order tensors as a special class of linear operators.

FYI: non-orthogonal coordinate systems and correct way of indexing

Are is a a $\geqslant L(u)$-u. a
limed

$1 \ln \tan \mathrm{c}$
v_{n}

Vectors
\rightarrow velocady $\quad v=v^{i} e_{i}$ displecement $u=V^{i} e_{i}$
posin $X=X^{i} e_{i}$ comprimens of vector x

Covectars bais for shat is ($\left.e^{\prime}, e^{7}, e^{s}\right)$
corectors in mechanis
for exampe
chaptarz

andther example
stress temsob chopter 3

$d x$ is displaad

$$
d x^{i}=F_{j}^{i} d X^{j}
$$

$$
L^{\text {Venr }^{i}}=\sigma^{i^{i}} n_{j}^{i \operatorname{lorect}}
$$

Back to fensor

From this point on, we are not going to be careful with up and down indices (not a big a deal for orthogonal coordinate systems)

Linear functions form a vector space themselves

$$
\begin{aligned}
& \text { is S,T,U we loom funtios from spate } \\
& \left\{\begin{array}{l}
S+T=T+S \\
S+(T+U)=(S+T)+U \\
S+0=S
\end{array}\right. \\
& (8+T)(4):= \\
& \text { Sta) }+7(a) \\
& \left.\int \alpha_{\mu}\right)^{s}=\lambda\left(\mu_{B}\right) \\
& (\lambda s)(a)=\lambda \&(a)
\end{aligned}
$$

A liwerer separate from Vochus
to Vectors

A second order tensor is basically a linear map that takes vector to vectors and in general higher order tensors map tensors to tensors

