CM2023/09/18

Monday, September 18, 2023 9:19 AM

Dyadic products

Recall I loosely defined
innor product
$$U \cdot Y = [U_1 \cdots U_n] \begin{bmatrix} V_1 \\ V_n \\ \vdots \\ V_n \end{bmatrix} = Ut Y = U_1 Y_1 - U_2 \begin{bmatrix} U_1 \\ \vdots \\ U_n \end{bmatrix} Y_2 \begin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix}$$

$$U = \begin{bmatrix} U_1 \\ \vdots \\ U_n \end{bmatrix} Y_2 \begin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix}$$

$$U = \begin{bmatrix} U_1 \\ \vdots \\ V_n \end{bmatrix} = Ut Y = U_1 Y_1 - U_2 Y_2 - U_1 Y_1$$

$$U = \begin{bmatrix} U_1 \\ \vdots \\ V_n \end{bmatrix} Y_2 \begin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix}$$

Definition of dyadic product should be coordinate-independent
for vectors
$$v \in V \in V$$
 are taking the dyadic product as an goodal
from $V \rightarrow V$:
 $Vector$
 $V = V$:
 $Vector$
 $V = V$:
 $Vector$
 $vectors$
 $vector$

U vector

$$V = V$$

 $v = V$
 $v = V$

Motivation on cahal the boosis is for 2nd order tensors:

$$V = V!e_{1} + V!e_{2} + V^{3}e_{3}$$

$$V = (U', V', V^{5})$$

$$e_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} e_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} e$$

bosically the same way for vectors as had

$$V = V_i e_i$$
 in an orthogonal coordinate
 $V_i = V_i e_i$ is an orthogonal coordinate
system

core have

$$T = T_{ij} e_{i} \otimes e_{j}$$
where $T_{ij} = g_{i} \cdot (T_{ej})^{(2)}$

$$T_{iz} = e_{i} \cdot T_{e_{i}}$$

$$T_{iz} = (T_{ij} e_{i} \otimes e_{j})^{V}$$

$$T_{iz} = (T_{ij} e_{i} \otimes e_{j})^{V}$$

$$T_{iz} = (T_{i})^{i} e_{i}$$

$$= (e_{i} \cdot T_{i})^{i} e_{i}$$

$$= (v_{j} e_{i} \cdot T_{e_{j}})^{i} e_{i}$$

$$= (v_{j} e_{i} \cdot T_{e_{j}})^{i} e_{i}$$

$$T_{iz} = (T_{ij} e_{i} \otimes e_{j})^{V}$$

$$T_{iz} = T_{iz} e_{i} \cdot T_{e_{j}}$$

$$T_{iz} = e_{i} \cdot T_{e_{j}}$$

ME536 Page 3

Theorem 51 Let $\mathbf{T} \in \text{Lin } \mathcal{V}$ with components T_{ij} w.r.t. the r.C.c.f. X, and let $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ with components u_i, v_i w.r.t. X. Then

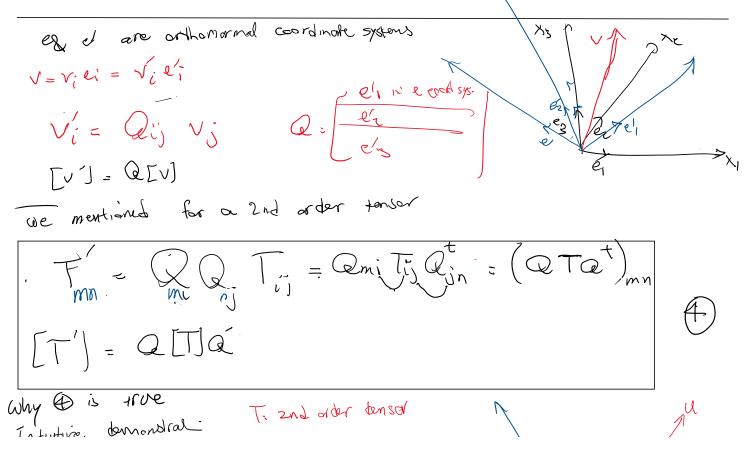
$$\mathbf{T}\mathbf{u} = \mathbf{v} \Leftrightarrow T_{ij}u_j = v_i.$$

|Proof. Suppose Tu = v. Then

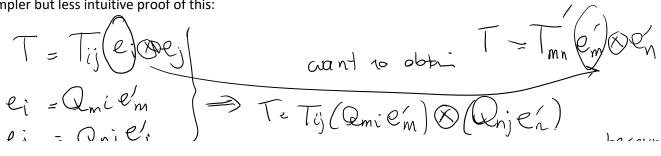
 $v_i = \mathbf{e}_i \cdot \mathbf{v}$ (components of \mathbf{v}),

- $= \mathbf{e}_i \cdot (\mathbf{Tu}) \ (supposition),$
- $= \mathbf{e}_i \cdot [(T_{kl} \mathbf{e}_k \otimes \mathbf{e}_l) \mathbf{u}]$ (component representation of **T**),
- $= \mathbf{e}_i \cdot [T_{kl} (\mathbf{e}_k \otimes \mathbf{e}_l) \mathbf{u}]$ (defns. of tensor + and scalar mult.),
- $= \mathbf{e}_i \cdot [T_{kl} (\mathbf{e}_l \cdot \mathbf{u}) \mathbf{e}_k] \ (defn. \ of \ \otimes \),$
- $= \mathbf{e}_i \cdot [T_{kl} (u_l \mathbf{e}_k)]$ (components of \mathbf{u}),
- $= T_{kl}u_l(\mathbf{e}_i \cdot \mathbf{e}_k)$ (distr. and homog. of \cdot),
- = $T_{kl}u_l\delta_{ik}$ (orthonormality of base vectors),
- = $T_{il}u_l = T_{ij}u_j$ (property of δ_{ik} and labeling).

$$\therefore \mathbf{T}\mathbf{u} = \mathbf{v} \Rightarrow T_{ij}u_j = v_i.$$



$$\begin{array}{c} (U_{1}, \mathcal{Q}) \text{ is } + f(\mathcal{N}) \\ \text{In turbular boundards} \\ (T_{1}, z_{1}, z_{1}, z_{2}, z_{3}, z_{3}, z_{1}, z_{$$



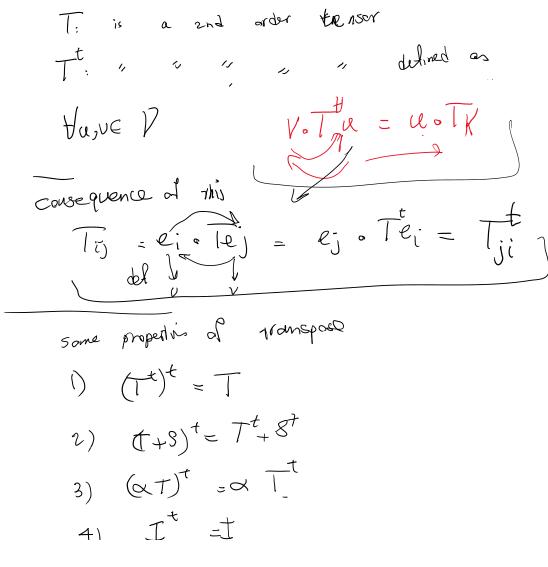
1

Theorem 53 Let there be a set of nine real numbers associated with every r.C.c.f. in a three-dimensional Euclidean point space \mathcal{E} . For example, consider the sets $\{X, \mathbf{e}_i, T_{ij}\}$ and $\{X', \mathbf{e}'_i, T'_{ij}\}$ where X and X' are arbitrary frames with respective base vectors \mathbf{e}_i and \mathbf{e}'_i . Then \exists ("there exists") $\mathbf{T} \in \text{Lin } \mathcal{V}$ given by $\mathbf{T} = T_{ij}\mathbf{e}_i \otimes \mathbf{e}_j = T'_{ij}\mathbf{e}'_i \otimes \mathbf{e}'_j$ iff the two-index symbols T_{ij} and T'_{ij} satisfy the transformation rules

$$T'_{ij} = \lambda_{ik} \lambda_{jl} T_{kl}; \ T_{ij} = \lambda_{ki} \lambda_{lj} T'_{kl}.$$

for all choices of $\{X, e_i, T_{ij}\}$ and $\{X', e'_i, T'_{ij}\}$, where λ_{ij} are the cosines of the angles between e'_i and e_j .

Other definitions related to 2nd order tensors Transpose of a 2nd order tensor



ME536 Page 6

4)
$$I^{\dagger} = I$$

5) $(u \otimes v)^{\dagger} = v \otimes u$
 $((u \otimes v)^{\dagger})_{\widetilde{v}} e_i(u \otimes v)^{\dagger} e_j$
 $= e_j \cdot ((u \otimes v) e_i) - e_j \circ (u (v \cdot e_j)) = e_j \cdot u) (v \cdot e_j)^{\sharp}$
 $u_j v_i = e_i ((v \otimes u) e_j)$

Some definitions of tensor spaces

