$$
E=\varepsilon_{i j k} e_{i} \otimes e_{j} \otimes e_{k}
$$

permutation zed order tenser

Polyads are the generalization of dyadic products:
(3)
generalization of

$$
\underbrace{\left.u_{1}(v) u_{2}\right) w}_{\text {2ndadertensor }}=u_{1}(\underbrace{\left.u_{2} \cdot w\right)}
$$

Components of a tensor:

See TAM551:

- Def 46 for components of an m'th order tensor
- Theorem 84 for equation (*)
- Theorem 88 for coordinate transformation of an m'th order tensor (**)

Tensor product in general:

tensor
product

Other examples

$$
\text { vector }\left\{\begin{array}{l}
V=T u \\
i=2 \text { indorder for or dor } \\
=2-1
\end{array}\right.
$$

$$
\begin{aligned}
\left(T: S^{t}\right)=(T \circ S) & =T_{i j} \quad \bigodot_{j i}=T_{i j} S_{i j}^{t}=T \cdot \rho t \\
& =2-2
\end{aligned}
$$

the mare common end order tensor prowl is

only 1 index is contracted

- As we can see for a tensor order m multiplying a tensor order $n(n<=m)$, we can contract n indices (common definition), $\mathrm{n}-1$ indices, ..., 1 index
- For S \& T both second order $(n=m=2)$ the common tensor product only contracts 1 index (4b)

Identity tensor in higher dimensions

(2)

For example ar have ($\frac{4}{1}$)

$$
I_{i j k l}=\cdots
$$

$$
\begin{aligned}
& u \times v= \\
& |u \times v|=|u||v| \sin \theta=\text { dosed area } \\
& \begin{array}{c}
r e c a l l \\
\text { solar } \\
\text { valve }
\end{array} \\
& U \otimes V=\left[\begin{array}{l}
u \\
u_{2} \\
u_{3}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] \quad \begin{array}{r}
\text { end } \text { dor } \\
\text { tensed }
\end{array}
\end{aligned}
$$

$H=|r| \sin \theta$ Area, $H(u)=|u| l v \mid \sin t$

Area of triangle
Area

$$
\frac{1}{2}|u \times v|
$$

$$
2 A=|n \times v|
$$

- -

$u \times V: \quad$ magnitude $=$ green area

$$
d \times V=\text { surface }
$$

normal vector
for Quad formed by

(4) u\&V

Form aa for $u \times v$
Recall: $E=\epsilon_{i j k} e_{i}\left(e_{j}(x) e_{k}\right.$ alternating tensor

$$
u \times v=\left(F_{1}, ~\right) u_{1}
$$

we can show

$$
\begin{aligned}
u \times v=\operatorname{det}\left|\begin{array}{ccc}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|= & \left(u_{2} v_{3}-u_{3} v_{2}\right) i \\
& +\left(v_{1} u_{3}-u_{1} v_{3}\right) j \\
& +\left(u_{1} v_{2}-v_{1} u_{2}\right) k
\end{aligned}
$$

$$
u \times v=(E v) u=e_{i j k} u_{i} v_{j} e_{k}
$$

(5)

Interesting fads

$$
\begin{array}{cc}
v \times u & =-U \times V \\
U \times(V \times w) & \neq
\end{array}
$$

Theorem 93 The vector product is not associative:

indeed

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} & =(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} \\
\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) & =(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}
\end{aligned}
$$

Triple product: Used to calculate volumes

$$
V=(u \times v) \cdot w
$$

A
$V=(u \times v) \cdot \omega=$

$$
V=A H
$$

$=A \mid(\mid) \cos \theta$

$$
\left|\begin{array}{ll}
a_{1} & b_{2} \\
u_{3} \\
u_{1} & v_{3} \\
v_{1} & v_{2} \\
v_{3}
\end{array}\right| \cdot\left(w_{1} \varepsilon_{1}+w_{2} \varepsilon_{2}+a_{3} \rho_{5}\right) \Rightarrow
$$

$$
\begin{aligned}
& V=(u \times v) \cdot w=\operatorname{det}[\\
& V_{\text {tet }}=\frac{(u \times v) \cdot w}{2 \times 3}=\frac{(u \times v) \cdot w}{6}
\end{aligned}
$$

u, v, w are called right-hand oriented eff

$$
(w \times v) \cdot w>0
$$

We generally use Right-handed coordinate systems

Orthonormal or orthogonal tensors:

Orthonormal or orthogonal tensors:

A second order tensor is called orthonormal if its inverse is equal to its transpose

$$
\begin{gathered}
T T^{t}=T^{t} T=I \\
T^{t}=T^{-1}
\end{gathered}
$$

 corr irate system

8: Rows of an orthonormal matrix are mutually normal to each other and each with magnitude 1.

Columns of an orthonormal matrix are mutually normal to each other and each with magnitude 1.

