Orthogonal tensors represent a rotation plus possibly a reflection.
Example of a reflection:

$$
\text { Tr cotcioio of } v \text { w.r.t } x_{2} \text { axio }
$$

$$
=T_{21}=\left[\begin{array}{l}
T_{11} \\
T_{21}
\end{array}\right]
$$

To form tewar T in cordinate $\left(x_{1}, x_{2}\right)$ ack T onvnit vector $e_{i} a_{n} d$ this will be column i

$$
\begin{gathered}
T e_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
c 1 \\
\operatorname{de} T=(-1)(1)=-1
\end{gathered}
$$

$$
\operatorname{Ter} \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad[T]_{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

(4) $\operatorname{det} T=-1$
t athognal
\Longleftrightarrow haris 1 reflectiai

Example of a rotation:
R repesents rotation by θ in cochber clockwise drectiar
Components of R in $\left(x_{1}, x_{2}\right)$ corrdinate systhen

$$
\begin{aligned}
& c:=\cos (\theta) \\
& \sin \sin (\theta)
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}=R e_{2}=\left[\left.\begin{array}{l}
-5 \\
c
\end{array} \right\rvert\,\right. \\
& R=\left[c_{1} \mid c_{2}\right] \Rightarrow
\end{aligned}
$$

$R=\left[\begin{array}{l|l}C & -S \\ S & c\end{array}\right]$
ratatia in 2D by $\theta \therefore$ counter cloek wise directic.
det $R=c^{2}+s^{2}=1$

$$
S=R T \quad \text { bet } \frac{\operatorname{det} R}{T} \frac{\operatorname{ded} T}{T}=-1
$$

ortheg on

$$
S S^{t}=R T\left(T^{t} R^{t}\right) \cdot R(\underbrace{T}_{I} T^{t}) R^{t}=R R^{t}=1
$$

Any orthogonal znd adder tensor Sreprosents α rotatici (angle of rotaticican be vero)
(3)
\& passibly a reftection
$\operatorname{det} S=-1 \Longleftrightarrow$ has 1 reflection
"Large deformation" rotations are represented by orthogonal tensors

Other properties of orthogonal and order tensors

1. $T \in$ Orth $\nu \quad$ (T is orthogonal)
2. $\forall u, v \quad T u \cdot T r=u \cdot v \quad$ "。" (mimer product) is preserved
3. $\forall u \quad ~ T u|=|u| \quad$ megninde is prospered
4. $\forall u, v \quad|T u-T v|=\mid \underbrace{|u-v|}_{d}$

(recall $\underset{\omega=T_{u}}{\left.\omega \cdot T_{V}=T_{\text {cor }}^{t}\right)^{1}}$
T orthonormal

$$
a=T u
$$

$$
T_{T}^{k} I_{0}
$$

$$
\begin{aligned}
& 3 \Rightarrow 2 \quad|\pi u|=\ln \mid \\
& |T v|=|v| \\
& \left.|T(u+v)|=|u+v| \quad \begin{array}{l}
\text { Square all of this } \\
\& \text { add/subtroct them }
\end{array}\right\} \Rightarrow T u . T_{v}=u \cdot v \\
& \begin{aligned}
3 \Rightarrow 4 & \forall \omega \\
& \quad(3) \\
& \quad c h|=|w| \\
& \text { chase } w=u-v
\end{aligned} \\
& \rightarrow|T(u-v)|=|u-v| \Rightarrow \\
& \left|T u-T_{v}\right|=|n-v|
\end{aligned}
$$

$$
\begin{aligned}
& \left.2 \Rightarrow 3 \underset{\substack{\operatorname{lu}_{u, i} \\
\text { chase }}}{\left.()^{2}\right)_{u}, T v=u, v} \begin{array}{l}
V=n
\end{array}\right\} \Rightarrow \\
& T u \cdot T u=u \cdot u \Rightarrow|T u|^{2}=|u|^{2} \Rightarrow \\
& \left|T_{u}\right|=|u|
\end{aligned}
$$

$$
4=13
$$

$\forall u, v|T u=T v|=|u-v|$

$$
\Rightarrow \quad \pi u|=|k|
$$

$$
\text { choose } v=0
$$

Orthogonal tensors also preserve angle between two vectors:

$$
\theta_{t h, T v}=e_{k, v}
$$

Summary:
Orthogonal tensors

- Preserve the magnitude of vectors

$$
\left|T_{u}\right|=|n|
$$

- Preserve:
- Angle
- Distance

$$
\theta u, \bar{w}=\theta_{v, v}
$$

- Inner product

Between any two vectors

Skew-symmetric tensors
They also represent rotations (but small rotations)

$$
\begin{aligned}
& W=-W^{t} \\
& \sim_{0} \underbrace{W} u=\underbrace{W_{-W}^{t}}_{-W} u \cdot u=-W u \cdot u=-u \cdot w_{r}
\end{aligned}
$$

Definition of axis of a second order skew-symmetric tensor:

$$
\begin{aligned}
& W:\left[\begin{array}{ccc}
0 & W_{12} & -W_{31} \\
-W_{12} & 0 & W_{23} \\
W_{31} & -W_{23} & 0
\end{array}\right] \\
& \text { we hare } 3 \text { indepent values of } w:
\end{aligned}
$$

$$
w_{i}=-\frac{1}{2} E_{i j k} W_{j k} \quad \omega=\operatorname{ax}\left(W_{N}\right)\left[\begin{array}{l}
W_{23} \\
w_{31} \\
w_{12}
\end{array}\right]
$$

(6) $W_{i j}=-\epsilon_{i j \nless} \omega_{k}$

$$
W=a \neq(\omega)=\left[\begin{array}{ccc}
0 & \omega_{3} & -\omega_{2} \\
-\omega_{3} & 0 & \omega_{1} \\
\omega_{2} & -\omega_{1} & 0
\end{array}\right]
$$

$$
W_{u}=w \times u
$$

Why $W_{U}=w_{x} U$ is a small angle rotation?

$$
w \times u=|w|(\underbrace{\left.e_{w} \times u\right)}
$$

$$
\begin{aligned}
& \operatorname{lock} \\
& \text { from } \\
& \text { fop } \\
& \text { top }
\end{aligned}
$$

$$
\begin{aligned}
& \left(W_{12}, W_{23}, W_{31}\right) \\
& W_{u}=\left[\begin{array}{ccc}
0 & w_{12} & -w_{31} \\
-w_{12} & 0 & w_{23} \\
w_{31} & -w_{23} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
w_{12} & u_{2} & -w_{31} u_{3} \\
-w_{12} & u_{1} & +w_{23} u_{3} \\
w_{31} & v_{1} & -w_{23} u_{2}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{l}
\omega_{23} \\
w_{31} \\
w_{12}
\end{array}\right]}_{\omega=a \times(W)} X\left[\begin{array}{l}
u_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& w \times u=|w|\left(e_{\omega} \times u\right) \\
& w=|w| e_{w} \\
& u=u_{11}+u_{1} \\
& u_{\|} \| \text {ew: } u_{11}=\left(u_{0}, e_{w}\right) e_{w} \\
& u \perp \perp e_{w} \quad u_{\perp}=u-u_{1}
\end{aligned}
$$

$$
\left|e_{w} \times u\right|=\left|u_{\perp}\right||w|
$$

$$
|w \times u|=\underbrace{|w|}_{\Theta} \mid \underbrace{u_{1} \mid}_{l}=l \theta
$$ $|\omega|=$ angle $\frac{\rho}{}$ rotation

(7)
$\left|u_{\perp}\right|=$ distance to angle of rotation
$e_{\omega}=\frac{\omega}{|\omega|}$ axis of ratadicio

$$
\approx w \times u
$$

small rotas change of posit

Decomposition of a tensor to symmetric and skew-symmetric tensors

$$
\begin{array}{ll}
T=\operatorname{sym}(T)+\operatorname{skew}(T) & \begin{array}{l}
\text { wed see that } \\
\text { shall def gracteat }
\end{array} \\
\operatorname{sym}(T)=\frac{T+T^{+}}{2} & \operatorname{staim}\left(E=\frac{J_{+}+\pi^{T}}{2}\right)
\end{array}
$$

We deal with several symmetric tensors (strain E , stress \measuredangle)

We want to calculate the eigenvalues of symmetric tensors (e.g. principal strains, stresses)

Recall definitions of eigenvalues and eigenvectors

Look at notes from 8/28

Not all matrices can be diagonalized

- If the matrix has distinct eigenvalues $->$ It is diagonalizable
- If some eigenvalues are repeated (e.g. lamba_1 = lambda_2 =5) it depends (Jordan form ...).
- If the matrix is symmetric (or more general Hermitian for complex matrices) it is not only diagonalizable but 1) eigenvalues are real, 2) eigenvectors are normal to each other.

