Properties of eigenvectors and eigenvalues of symmetric 2nd order tensors (or matrices)

1. Eigenvalues are real:

/2/2 = 72 = 03 +b2

conjugates $\overline{u} \cdot A u = \lambda \overline{u} u = \lambda u =$

= A (A = A)

ermition for roal (ym metrix

The An = XIUP = X / UP

Real

FYI: these properties hold for a more general class of Hermitian matrices https://en.wikipedia.org/wiki/Hermitian matrix

A Hermitian

or in matrix form:

A Hermitian

Hermitian matrices can be understood as the complex extension of real symmetric matrices.

If the conjugate transpose of a matrix A is denoted by A^{H} , then the Hermitian property can be written concisely as

A Hermitian

2. For an n by n symmetric matrix we have n linearly independent eigenvectors and in fact they are mutually normal to each other.

and to prove corresponding eigenvectors are normal

we have
$$\lambda_1 \pm \lambda_2$$
 & want to prove corresponding eigenvectors are normal $\lambda_1 \pm \lambda_2$ & want to prove corresponding eigenvectors are normal $\lambda_1 \pm \lambda_2$ $\lambda_1 + \lambda_2$ $\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5$ $\lambda_1 + \lambda_2$ $\lambda_1 + \lambda_2$ $\lambda_2 + \lambda_3 + \lambda_4$ $\lambda_1 + \lambda_2$ $\lambda_1 + \lambda_2$

In fact, we can make eigenvectors orthonormal (their magnitude is one and they are normal to each other)

2D and 3D examples, also discussing what happens when eigenvalues are equal:

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

$$A = \begin{bmatrix} A & b \\ A - \lambda I \end{bmatrix} \cup A = \lambda I = \lambda I = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix} \cup A = b = 0$$

What are the eigenvectors of this matrix?

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

→ \lambda,\lambda,\lambda,\lambda

dut (A-\lambda I)=0

300 order equalin'

we have 3 coes,

1) All eigenvalues are distinct

 $\lambda_1 \neq \lambda_2 \qquad \lambda_7 \neq \lambda_3 \qquad \lambda_1 \neq \lambda_3$ $\lambda_0 \neq \lambda_1 = \lambda_1 \cdot \hat{e}_1 \qquad no$

ez ez X

e; .e; = Sij

We can choose any two mutually unit normal vectors in the plane normal to e*3 to form 3 mutually normal unit vectors (a coordinate system)

(é, é, é,) (é, é, é,).

11= 12= 13= 1 $\sqrt{3}$

For a symmetric matrix A we can find 3 mutually normal unit vectors (a coordinate system) from eigenvectors of A.

If eigenvalues are distinct =>

 (e_1, e_2, e_3) is unique

Otherwise, we have many choices

Formula for calculating eigenvalues of a symmetric matrix in 3D:

Szs
$$(S-6I)U=0$$
 del $(S-6I)=0$ eigenvalue eigenvector $S_{13}U=0$ $S_{14}U=0$ $S_{15}U=0$ $S_{15}U=0$

Cayley-Hamilton equation or the characteristic equation for the 3x3 symmetric matrix

$$\begin{aligned}
-\delta^{3} + I_{1}\delta^{2} - I_{2}\delta + I_{3} &= 0 \\
I_{1} &= 46a\alpha(8) &= 8n + 8zz + 833 &= 8ii \\
I_{2} &= \frac{1}{2} \left[\left(4ra\alpha(8) \right)^{2} - 460\alpha(8^{2}) \right] &= \frac{1}{2} \left(\frac{9}{11} \frac{9}{11} - \frac{9}{11} \frac{9}{11} \right) \\
I_{3} &= 4dS
\end{aligned}$$

- Eigenvalues and eigenvectors of a tensor DO NOT depend on the choice of coordinate system (note: eigenvector is a vector and its components transform as a vector)
- I1, I2, I3 are called the invariants of a symmetric 3x3 tensor.

There are many representation theorem in continuum mechanics:

Stress
$$= f_{\zeta}(t_{1}, t_{7}, t_{3})$$

$$= f_{\zeta}(t_{1}, t_{7}, t_{3})$$

Instead of calibrating the equation for 6 arguments we can calibrate it for 3 arguments:

- Either eigenvalues (sigma1, sigma2, sigma3)
- Or principal values (I1, I2, I3)

Note:

FYI:

The actual matrix satisfies CH equation

S=U" N() plug = CH

Representation of a symmetric 2nd order tensor in it's principal direction coordinate:

$$\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_1 \\
0 & 0
\end{bmatrix}$$

$$S = S(j + i) \otimes e^j = \sum_{i=1}^{3} \lambda_i e^i \otimes e^i$$