Properties of eigenvectors and eigenvalues of symmetric $2 n d$ order tensors (or matrices)

1. Eigenvalues are real:

$$
\begin{aligned}
& \left({ }_{\text {conjugate }} \quad z=a+b i \quad \rightarrow \bar{z}=a-b i\right. \\
& |z|^{2}=\bar{z} \bar{z}=a^{2}+b^{2} \\
& \text { conjugate } \\
& \text { (1) } \quad \bar{u} \otimes A u=\lambda \sqrt{\bar{u}}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { conjugate }\binom{u \cdot \hat{A}^{\top} \bar{u}}{\bar{u}^{-T} w}=\lambda|u|^{2} \\
& \begin{array}{l}
\bar{A}^{-t}=A \\
\text { Hermitian } \\
\quad\left(A^{t}=A\right) \\
\text { for al }
\end{array} \\
& \begin{aligned}
\bar{u} \lambda u & =\lambda|u|^{2}=\lambda|u|^{2} \\
& \rightarrow \lambda=\bar{\lambda} \quad \lambda \quad \lambda \operatorname{Real}
\end{aligned}
\end{aligned}
$$

FYI: these properties hold for a more general class of Hermitian matrices
https://en.wikipedia.org/wiki/Hermitian matrix

$$
A \text { Hermitian } \quad \Longleftrightarrow a_{i j}=\overline{a_{j i}}
$$

or in matrix form:

$$
A \text { Hermitian } \quad \Longleftrightarrow \quad A=\overline{A^{\top}} .
$$

Hermitian matrices can be understood as the complex extension of real symmetric matrices.
If the conjugate transpose of a matrix A is denoted by A^{H}, then the Hermitian property can be written concisely as
A Hermitian $\quad \Longleftrightarrow A=A^{\mathrm{H}}$
2. For an n by n symmetric matrix we have n linearly independent eigenvectors and in fact they are mutually normal to each other.

$$
\begin{aligned}
& \text { siren } \quad A=A^{t} \\
& \text { no hame } \downarrow \backslash \text {, ane to above correspond exigenvechersare normal }
\end{aligned}
$$

unwon
we have $\quad \lambda_{1} \neq \lambda_{2} \mid \&$ wand to prove cimespondy eigenvectors are normal
$\left.\begin{array}{l}\text { i) } A u_{(1)}=\lambda_{1} u_{(1)} \\ \text { i) } A u_{(2)}=\lambda_{2} u_{(2)}\end{array}\right\} \Longrightarrow \quad u_{(1)} \perp u_{(2)}$
c)
ii)

$$
\left.\begin{array}{ll}
u_{(2)} \cdot A u_{(1)} & i \lambda_{1} u_{(1)} \cdot w_{22} \\
u_{(2)} \cdot A u_{(1)} & \therefore \lambda_{2}\left(v_{1} \cdot u_{(2)}\right.
\end{array}\right\}
$$

$$
\left.\Rightarrow \begin{array}{c}
\left(\lambda_{1}-\lambda_{2}\right) u_{(1)} \cdot u_{(2)}=0 \\
\lambda_{1} \neq \lambda_{2}
\end{array}\right\} \Longrightarrow
$$

$$
u_{(1)} \cdot u_{(2)}=0 \quad u_{(1)} \perp u_{(2)}
$$

In fact, we can make eigenvectors orthonormal (their magnitude is one and they are normal to each other)

$$
\begin{aligned}
& A_{3 \times 3} \text { (\#) } A_{u_{(1)}}=\lambda_{1} u_{(1)} \\
& A u_{2}=\lambda_{2} u_{n 1} \\
& A\left(y_{3}\right)=\lambda_{3} \mu_{3} \\
& e_{2}^{b} \cdot \frac{u_{2}}{\left|u_{n}\right|} \\
& e_{1}^{*}=\frac{u_{1}}{\left|u_{1}\right|} \rightarrow A e_{1}^{*}=\lambda_{1} e_{1}^{\infty} \\
& \text { Why? } \\
& e_{3}^{e}=\frac{u_{3}}{\left|a_{3}\right|} \\
& A e_{1}^{*}=A \frac{u_{1}}{\left|u_{1}\right|}=\frac{1}{\left|w_{1}\right|} A u_{1}-\frac{2}{(2)} \\
& e_{i}^{+}=\frac{w_{i}}{\left|w_{i}\right|} \quad \text { no summation on } i \\
& A e_{i}^{*}=\lambda_{i} e_{i}^{*} \\
& e_{i}^{*} \cdot e_{j}^{3}=0
\end{aligned}
$$

2D and 3D examples, also discussing what happens when eigenvalues are equal:
2D $\quad A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$

$$
\begin{gathered}
\begin{array}{l}
\lambda u=\lambda u=\lambda I n \Rightarrow \\
\left.\begin{array}{l}
(A-\lambda I) u=0 \\
u \neq 0
\end{array}\right\} \Rightarrow \operatorname{det}(A-\lambda I)=0
\end{array}
\end{gathered}
$$

$$
\left.\operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
b & d-\lambda
\end{array}\right]=0 \rightarrow(a-\lambda)(d-\lambda)-b^{2}=0\right)=\underbrace{}_{\operatorname{trace} A}\left(\begin{array}{ll}
\lambda^{2}-(a+d) \lambda & +\underbrace{a d-b^{2}}_{\operatorname{dt} A}=0
\end{array}\right.
$$

$$
\lambda=\frac{(a+d) \pm \sqrt{(a-d)^{2}+4 b^{2}}}{2}
$$

$$
\xrightarrow{2 a-d)^{2}+\underbrace{4 b^{2}}_{\geq 0}=0} \stackrel{a}{2}=d
$$

$$
\begin{array}{r}
\lambda_{1}=\lambda_{2} \xrightarrow{2 a-d)^{2}+\underbrace{4 b^{2}}_{20}}+\quad A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right] \\
\left\langle\quad \lambda_{1,2}=a\right.
\end{array}
$$

What are the eigenvectors of this matrix?

$$
A=a I \quad A u=a I n=a u
$$

3D:

$$
A=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

$\longrightarrow \quad \lambda_{1}, \lambda_{2}, \lambda_{3}$ Solved from $\operatorname{det}(A-\lambda I)=0$ $3^{\text {rad ordo aquatic, }}$
we hare 3 cones:

1) All eigenvalues are distinct

$$
\lambda_{1} \neq \lambda_{2} \quad \lambda_{2} \neq \lambda_{3} \quad \lambda_{1} \neq \lambda_{3}
$$

$$
\begin{aligned}
& A e_{i}^{*}=\lambda_{i} e_{i}^{0} \\
& e_{i} e_{j}^{s}=\delta_{i j}
\end{aligned}
$$

2) Two of the eigenvalues are equal

Anu roster normal to n..................... th eigenvalue λ_{1}

Any vector normal to e_{3}^{*} is an elgon vector with eigen valve $\lambda_{\text {, }}$.

We can choose any two mutually unit normal vectors in the plane normal to e*3 to form 3 mutually normal unit vectors (a coordinate system)

$$
\left(e_{1}, e_{2}, e_{3}\right)
$$

$ノ$

1
3) $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$

$$
\begin{aligned}
& \left.A=U^{\lambda} \perp U=U^{-1}\left[\begin{array}{ll}
\lambda & \\
& \lambda \\
\lambda
\end{array}\right) U=\lambda U^{-1} I\right)=\lambda I \\
& \vec{A}=\left[\begin{array}{lll}
\lambda & & \\
& & \\
& & \lambda
\end{array}\right]: \lambda\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right) \\
& \begin{array}{l}
A u=\lambda u \\
\text { for ANY } u
\end{array}
\end{aligned}
$$

Summary:
For a symmetric matrix A we can find 3 mutually normal unit vectors (a coordinate system) from eigenvectors of A.
If eigenvalues are distinct \Rightarrow
Otherwise, we have many choices $\left(e_{1}^{0}, e_{2}^{p}, e_{B}^{\infty}\right)$ is unique

Formula for calculating eigenvalues of a symmetric matrix in 3D:

$$
\begin{aligned}
& s_{3 \times 3} \\
& \text { (S - } S I) u=0 \\
& \operatorname{det}\left[\begin{array}{ccc}
S_{11}-6 & S_{12} & S_{13} \\
S_{12} & S_{2-6} & S_{23} \\
S_{13} & S_{23} & S_{33-6}
\end{array}\right]=0
\end{aligned}
$$

Cayley-Hamilton equation or the characteristic equation for the 3×3 symmetric matrix

$$
\begin{aligned}
& {[S] \quad e_{1,} e_{2}, e_{y}} \\
& {\left[S^{\prime}\right] \quad \therefore \quad e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}}
\end{aligned}
$$

$$
S_{i j}^{\prime}=Q_{i m} Q_{j n} P_{m-}
$$

- Eigenvalues and eigenvectors of a tensor DO NOT depend on the choice of coordinate system (note: eigenvector is a vector and its components transform as a vector)
- I1, I2, I3 are called the invariants of a symmetric 3×3 tensor.

There are many representation theorem in continuum mechanics:
internal envoy

$$
f(s)=f\left(s_{1}, s_{2}, s_{5}, s_{2}, s_{3}, s_{3}\right)
$$

chess

stress

$$
\begin{aligned}
& \underbrace{}_{\operatorname{sinat} x}=f_{b}\left(b_{1}, b_{2}, \sigma_{3}\right) \\
& \text { OR }=f_{I}\left(t_{1}, f_{2}, t_{3}\right)
\end{aligned}
$$

Instead of calibrating the equation for 6 arguments we can calibrate it for 3 arguments:

- Either eigenvalues (sigma1, sigma, sigma)
- Or principal values (I1, I2, I3)

Note:
FYI:

The actual matrix satisfies CH equation

$$
\text { Hint } S=U^{-1} \wedge U \text { Page in CH }
$$

Representation of a symmetric and order tensor in it's principal direction coordinate:
S sym we have found
3 whonormal eigenvectors

$$
S=[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
s_{22} & S_{23} & S_{33}
\end{array} \underbrace{}_{e_{1}, e_{7}, e_{3}}
$$

$$
-S^{3}+I_{1} \beta^{2}+I_{2} \rho+I_{3} \pm=0
$$

$$
S e_{i}^{l}=\lambda_{i} e_{i}^{\vec{~}}
$$

Why recall $T_{i j}=e_{i} \cdot T_{e j}$

$$
\left(S^{2}\right)=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[S^{0}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{j}
\end{array}\right]} \\
& S=S_{i j}^{*} e_{i}^{\theta}(x) e_{j}^{\theta}=\sum_{i=1}^{3} \lambda_{i} e_{i}^{*}(x) e_{i}^{3}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& {\left[S^{0}\right]=\left[\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right]} \\
& \text { Sin e énén } \\
& \lambda=\zeta \\
& e_{2}^{a}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \xrightarrow[e_{1}]{e_{1}^{a}} \\
& \text { cocrdinate } \\
& =5 e_{1}^{2} \theta e_{2}^{3}+10 e_{2}^{\theta} \theta e_{2}^{a}
\end{aligned}
$$

[3]

