CM2023/10/23

$$
\begin{aligned}
& \overrightarrow{\Delta y}=F \overrightarrow{\Delta x} \\
& \overrightarrow{d y}=F \vec{b}
\end{aligned}
$$

and order tenser

$$
F=\nabla_{y / x}=\nabla_{x} \underbrace{f(x, t)}_{y}
$$

$$
\begin{aligned}
\left\{\begin{array}{l}
y_{1}=1.1 x_{1} \\
y_{2}=1.5 x_{2} \\
y_{3}
\end{array}=1.2 x_{1}+1.7 x_{3}\right.
\end{aligned} \quad F=\nabla_{y / x}=\left[\begin{array}{ccc}
1.1 & 0 & a \\
0 & 1.5 & 0 \\
1.2 & 0 & 1.7
\end{array}\right]
$$

$C=F^{t} F \quad$ right Cavchy-Green deformation tensor
(0) $|\Delta y|=\sqrt{\Delta x \cdot C \Delta x}$

Length of $\Delta y$
2. (Change of) angle
(*) recall

$*$ recall $\Delta_{a}^{\Delta e} a \cdot b=|a||b| \cos \theta$ $\cos \theta y=\frac{\Delta y^{(1)} \cdot \Delta y^{(2)}}{\left|\Delta y^{(1)}\right|\left|\Delta y^{2}\right|}$
$\cos \theta=\frac{\Delta y^{(\prime)} \cdot \Delta y^{(2)}}{\left|\Delta y_{j}\right|| | \Delta y^{\prime} \mid}$
$\left.\begin{array}{l}\theta \rightarrow\left|\Delta y^{(i)}\right|=\sqrt{\Delta y^{(i)} \cdot C \Delta_{j}^{(i)}} \text { no summatia on i } \\ 0 \Rightarrow \Delta y^{(i)}=F \Delta x^{(i)}\end{array}\right\} \Rightarrow \operatorname{Cos} \theta_{y}=\frac{\sqrt{ } \Delta_{x}^{(1)} \cdot F \Delta x^{(2)}}{\sqrt{\Delta x^{(1)} \cdot C \Delta x^{(1)} \sqrt{\Delta x^{(2)} \cdot C \Delta x^{(2)}}}}$
$\rightarrow$ (2) $\quad \operatorname{cs} \theta y=\frac{\Delta x^{(2)} \cdot C \Delta x^{(1)}}{\sqrt{\Delta x^{(1)} \cdot C \Delta x^{(1)}} \sqrt{\Delta x^{(2)} \cdot C \Delta x^{(2)}}}$

$$
C=F^{t} F
$$



$$
\begin{aligned}
& \overrightarrow{\Delta y}=F \overrightarrow{\Delta x} \\
& \overrightarrow{d y}=F \overrightarrow{d x}
\end{aligned}
$$

$C=F^{t} F \quad$ right Cavchy-Green deformation tensor
(9) $|\Delta y|=\sqrt{\Delta x \cdot C \Delta x}$

Length of $D y$
$|\Delta y| \&$ Qy cill be used to detiai narmal \& shear otrains
3. (Chage of) Volume


(3)

$J:=$
$\operatorname{det} F$
Jacobin of effombirien
I is a scalar

Recall
Definition 72 Let ${ }_{\mathcal{B}}^{0}$ be an open, bounded, regular region of a Euclidean point space $\mathcal{E}$. A deformation f is a mapping (function) of points in $\stackrel{0}{\mathcal{B}}$ onto another open region of $\mathcal{E}$ with the properties

1. f is one-to-one; ie., $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathbf{y}) \Rightarrow \mathrm{x}=\mathrm{y} \forall \mathrm{x}, \mathrm{y} \in \mathcal{B}$,
2. $\mathrm{f} \in C^{2}(\underset{\mathcal{B}}{0}), \mathrm{f}^{-1} \in C^{2}(\mathrm{f}(\underset{\mathcal{B}}{0}))$,
3. $\operatorname{det} \nabla \mathrm{f}(\mathrm{x})>0 \forall \mathrm{x} \in \stackrel{0}{\mathcal{B}}$.

The notation $\mathbf{f}(\underset{\mathcal{B}}{0})$ refers to the mapped region, which is called the image of the set ${ }^{0} \mathcal{B}$ under f .

of size $\Delta S_{x}$
\& diredin $\vec{h}$

From here, we'll drop the vector notation from the surface differential as always we work with the oriented surface (surface area * normal)
We're looking for shh like

proof

$\lambda y^{(2)}$

we need to use a trickle to come up will a 3rd vector \& use del fromus

$$
\begin{align*}
& \overrightarrow{\Delta S_{y}}=\left(X S_{y}\right)_{1} e_{1}+\left(\Delta S_{y}\right)_{2} e_{2}+\left(\Delta S_{3}\right) e_{3} \\
& \vec{\rightarrow} \quad \lambda S_{y}=\left(\Delta S_{y}\right) \cdot e_{1}, \cdots \\
& \Rightarrow\left(\overrightarrow{\Delta S_{y}}\right)_{i}=\left(\Delta \vec{S}_{y}\right) \cdot e_{i}=\left(\Delta y^{(1)} x \Delta y^{(2)}\right) \cdot e_{i} \\
& =\left(\left(F \Delta x^{(1)}\right) 火\left(F \Delta x^{(2)}\right)\right) \cdot(\underbrace{\left(F F_{1}^{-1}\right)} e_{i} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& =\left(F \Delta x^{v}\right) \times\left(F \Delta x^{21}\right) \cdot F\left(F^{-1} e_{i}\right) \\
& =\operatorname{det} F\left(\Delta x^{(1)} \times \Delta x^{(2)}\right) \cdot F^{-1} \quad \begin{array}{l}
\text { like } \\
\text { the volumed }
\end{array} \\
& =\operatorname{det} F F^{-t}(\underbrace{i}_{\left.\frac{\Delta s^{\prime}}{\left(\frac{\Delta x^{(1)}}{v \Delta x^{(2)}}\right) \cdot e_{i}}\right)} \\
& \xrightarrow[\Delta y^{(1)}]{\rightarrow \rightarrow} \\
& \overrightarrow{\Delta S}_{y}=\Delta y^{(1)} \times \lambda y^{2} \\
& \Delta y^{(\alpha)}=F \Delta x^{(\alpha)} \\
& =\operatorname{det} F F^{-t}\left(\overrightarrow{\Delta S}_{x}\right) ; \\
& V=V_{i} e_{i} \\
& V_{i}=V \cdot \bar{e}_{i} \\
& \text { new surface } \\
& \text { rec. } \\
& \text { reference surface } \\
& \vec{S}\{\text { area } \\
& \text { 解 } \\
& \text { Compare with } \\
& \Delta y=F \Delta x \quad \text { how vectors ane tappet } \\
& y_{1}=1-1 x_{1} \\
& y_{2}=-1.1 x_{2} \\
& y_{3}=1.1 x_{3} \\
& d y=E d x \quad 1.1 \\
& d v_{y}=\left(d^{J}+T^{2}\right) d v_{x}
\end{aligned}
$$

(4)

Another proof of this:

$$
\begin{aligned}
& \left.\begin{array}{ll}
\Delta y^{\prime}-A x^{2} \rightarrow \Delta y_{i}^{\prime}=F_{i m} \Delta x_{m}^{\prime} \\
\Delta a^{2}+F \Delta x^{2} \Rightarrow \Delta y_{i}^{2}=F_{j n} A A_{n}^{2}
\end{array}\right] \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{duF} F}{d t f} \underbrace{\left(\epsilon_{j n}\right) \Delta x_{m}^{\prime}}_{\epsilon_{i j k} F_{\text {wm }} F_{j n}=\operatorname{detF} \epsilon_{m a p} F_{p k}^{-1}} \begin{array}{c}
\Delta x_{n}^{2} \\
e_{k}
\end{array}\} \rightarrow \\
& \begin{array}{l}
\Delta r_{y}=\left(E_{m n p} p_{p k}^{-1} \operatorname{def}\right) \Delta x_{m}^{\prime} \Delta x_{n}^{2} e_{k}=\operatorname{def}(\underbrace{\left(E_{m p} \Delta x_{m}^{\prime} \Delta x_{n}^{2}\right.}_{\left(\Delta x_{x}^{\prime} \Delta x^{2}\right)_{p}}) F_{p k}^{-1} e_{k} \\
=\operatorname{det} f F^{-1}\left(\Delta x^{\prime}, \Delta x^{2}\right) \quad e_{k}
\end{array} \\
& =\operatorname{det} f F_{k p}^{-\dagger}\left(\Delta x^{1} \times \Delta x^{2}\right)_{p} e_{k} \\
& =\operatorname{det} F\left(F^{+} \Delta S_{x}\right)_{k} e_{k}=\operatorname{det} F F^{-T} \Delta \vec{S}_{x}
\end{aligned}
$$

