Wednesday, October 25, 2023 9:47 AM $\begin{pmatrix}
y_1 = x_1 + \alpha + x_2 \\
y_2 = x_2 \\
y_{3-1} + x_3
\end{pmatrix}$ Matlab test file that will be shared with you % displacement factor is alpha * t where alpha is a factor and t is time $\frac{1}{F} = \frac{1}{1} + \frac{1}{2} + \frac$ メ、 $\alpha 1$ F = 0 $dS_{z}(J), O)$ Mer = 1 0 ١ \mathcal{O} 0 X3 dSy & 0-511001 \geq $\dot{\prec}_{\lambda}$

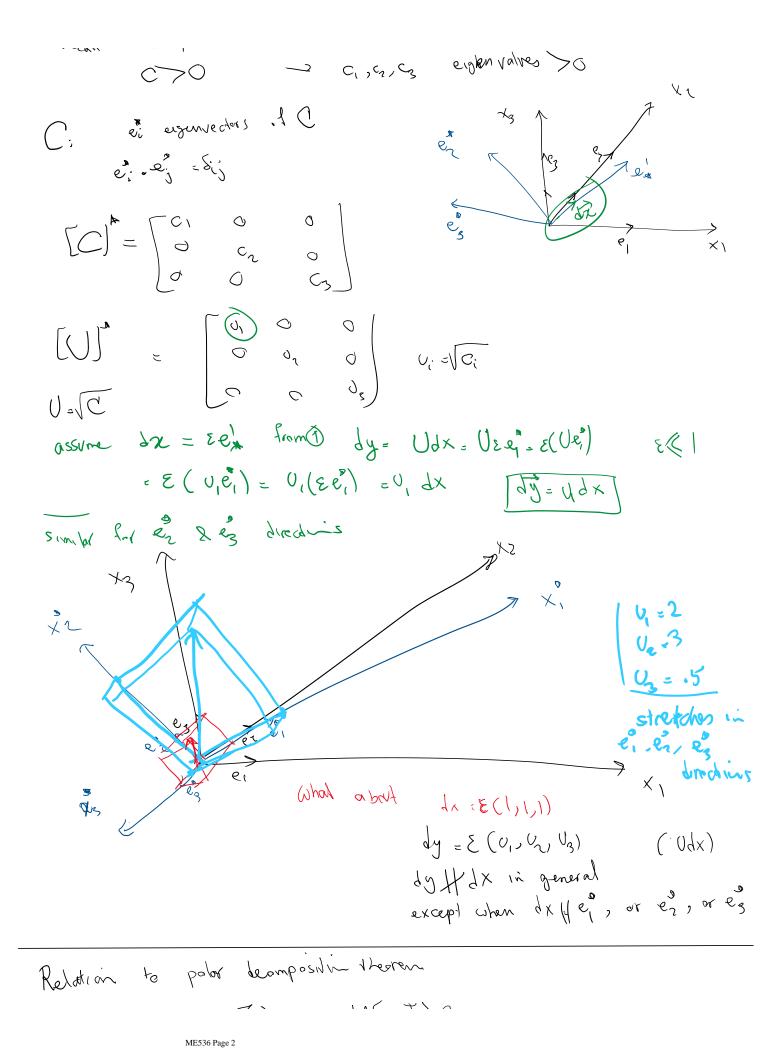
Further discussion on the right Cauchy-Green tensor C and path to definition of strain:

CM2023/10/25

$$C = F^{\dagger}F$$

$$\int dy = \sqrt{dx} \cdot C dx$$

$$\int dy = \sqrt{(1 + 1)^{2}} + \sqrt{(1$$



Relation to polor decomposition theorem
Recall
$$F = (V_{X})$$
, $det F = J > 0$
where $F = R U = VR$
 $U = VC$, $C = F^{t}F$
 $V = VB$, $B = FF^{t}$

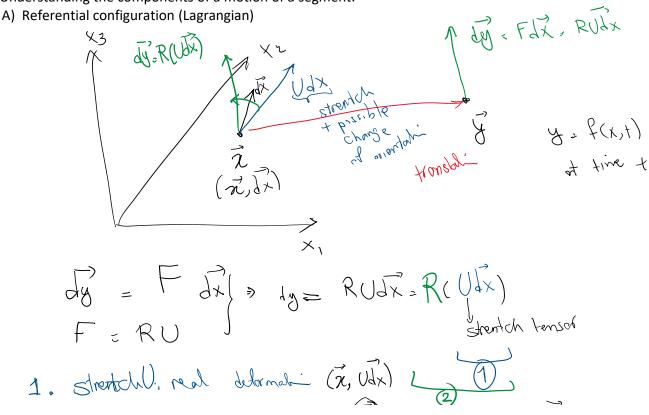
Definition 80 Let the deformation gradient $\mathbf{F} = \nabla \mathbf{f}$ of the deformation \mathbf{f} of $\overset{0}{\mathcal{B}}$ have the polar decomposition

$$\mathbf{F}(\mathbf{x}) = \mathbf{R}(\mathbf{x})\mathbf{U}(\mathbf{x}) = \mathbf{V}(\mathbf{x})\mathbf{R}(\mathbf{x})$$

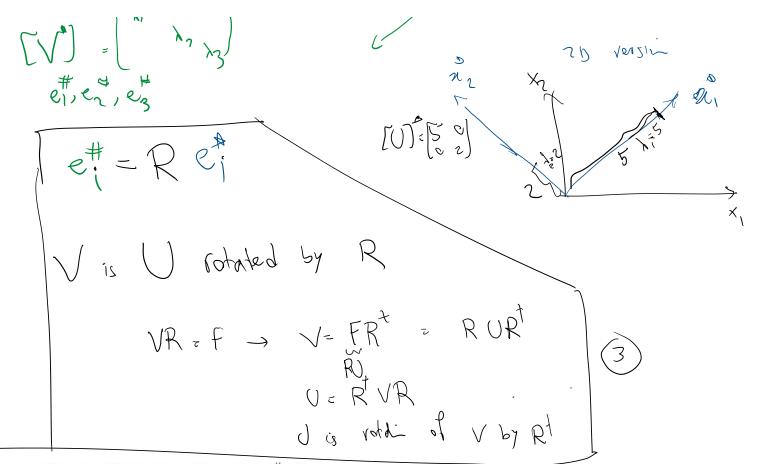
 $\forall \mathbf{x} \in \overset{0}{\mathcal{B}}$, where $\mathbf{U}(\mathbf{x}), \mathbf{V}(\mathbf{x}) \in \text{Psym and } \mathbf{R}(\mathbf{x}) \in \text{Orth } \mathcal{V}^+$. The following terminology is standard.

- $\mathbf{R}(\mathbf{x})$ the rotation tensor at \mathbf{x} ;
- U(x) the right stretch tensor at x;
- V(x) the left stretch tensor at x;
- $C(x) = F^{t}(x)F(x)$ the right Cauchy-Green deformation tensor at x;
- $\mathbf{B}(\mathbf{x}) = \mathbf{F}(\mathbf{x})\mathbf{F}^t(\mathbf{x})$ the left Cauchy-Green deformation tensor at \mathbf{x} .

Understanding the components of a motion of a segment:

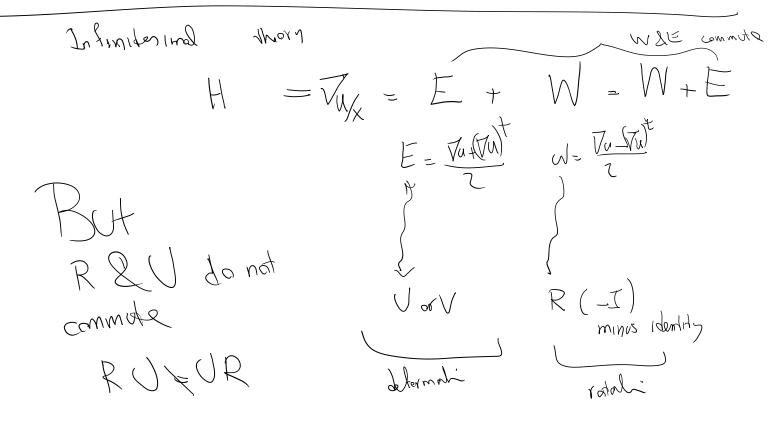


U=VU
$$V = \sqrt{3}$$
, $B = FF^{\dagger}$ $U \neq V$
 $R = \sqrt{3}$, $R = FF^{\dagger}$ $U \neq VR$ for matrix in porced
B(1 the principal standard fURV
are the some
Assume vector a is an expension of URV
 $V = \sqrt{R}$ $VR = \sqrt{R}$
 $VR = \sqrt{R}$ $R = \sqrt{R}$ $R = \sqrt{R}$
 $VR = \sqrt{R}$ $R = \sqrt{R}$
 $VR = \sqrt{R}$ $R = \sqrt{R}$
 $VR = \sqrt{R}$
 $R = \sqrt{R}$
 $VR = \sqrt{R}$
 V



Theorem 128 Let f be a deformation on $\overset{\circ}{\mathcal{B}}$. Then

- 1. $\mathbf{C} = \mathbf{U}^2$, $\mathbf{B} = \mathbf{V}^2$,
- 2. $\mathbf{V} = \mathbf{R}\mathbf{U}\mathbf{R}^t$, $\mathbf{U} = \mathbf{R}^t\mathbf{V}\mathbf{R}$;
- 3. $\mathbf{B} = \mathbf{R}\mathbf{C}\mathbf{R}^t$, $\mathbf{C} = \mathbf{R}^t\mathbf{B}\mathbf{R}$.



Definition of G, E, and W:

$$F = \sqrt{3}\chi = \sqrt{(1+x)}\chi = \sqrt{3}\chi + \sqrt{3}\chi$$

$$C = F^{t}F$$

$$F = H + I$$

$$= (H + I)^{t}(H + I) = H^{t}H + H^{t} + H + I$$

$$G = \frac{1}{2}(C - I)$$

$$Green SI - Venant Strain turker$$

$$= \frac{1}{2}H^{t}H + H^{t} + H + I = \frac{1}{2}H^{t}H + E$$

$$E = \frac{1}{2}H^{t}H + H^{t} + H + I = \frac{1}{2}H^{t}H + E$$

$$K = \frac{1}{2}H^{t}H + \frac{1}{2}H^{t} = \frac{1}{2}H^{t}H + E$$

$$W = \frac{1}{2}H^{t}H + \frac{1}{2}H^{t} = rotoh$$

$$W = \frac{1}{2}H^{t}H + \frac{1}{2}H^{t} = rotoh$$

$$W = \frac{1}{2}H^{t}H + \frac{1}{2}H^{t} = rotoh$$

$$H = \sqrt{3}\chi_{3}$$