CM2023/10/30

Monday, October 30, 2023 9:47 AM

Continue from last time:

$$G = \frac{1}{2}(C_{j} - I)$$

$$G_{ij} = \frac{1}{2}(C_{ij} - S_{ij})$$

$$C = F^{T}F \qquad C_{ij} = (F^{T}F)_{ij} = (F^{T})_{in} f_{mj} = F_{mi} F_{mj}$$

$$F = H + I \qquad F_{mi} = H_{mi} + S_{mi}$$

$$G_{ij} = (H_{mi} + S_{mi})(H_{mj} + S_{mj}) = H_{mi} H_{mj} + H_{mj} S_{mi} + H_{mi} S_{mj} + U_{mi} S_{mj}$$

$$G_{ij} = (H_{mi} + S_{mi})(H_{mj} + S_{mj}) = H_{mi} H_{mj} + H_{mj} S_{mi} + H_{mi} S_{mj} + U_{mi} S_{mj}$$

$$G_{ij} = (H_{mi} + H_{ij} + H_{ji} + S_{j}) = S_{mi}$$

$$G_{ij} = \frac{1}{2}(C_{ij} - S_{ij}) \qquad S_{mi}$$

$$G_{ij} = \frac{1}{2}(C_{ij} - S_{ij}) \qquad S_{mi}$$

$$G_{ij} = \frac{1}{2}(H_{ij} + H_{ji}) + \frac{1}{2}H_{mi} + H_{mi} + H_{mi} + H_{mi} + H_{mi}$$

$$G_{ij} = \frac{1}{2}(H_{ij} + H_{ji}) + \frac{1}{2}H_{mi} + H_{mi}$$

$$G_{ij} = \frac{1}{2}(H_{ij} + H_{ji}) + \frac{1}{2}H_{mi} + H_{mi} + H_{mi} + H_{mi} + H_{mi}$$

$$G_{ij} = \frac{1}{2}(H_{ij} + H_{ji}) + \frac{1}{2}H_{mi} + H_{mi} +$$

HW6:

(d) Expansion of \mathbf{G} and \mathbf{G}^* : Using (4) show,

$$G := \frac{1}{2} (\mathbf{H} + \mathbf{H}^{\mathrm{T}} + \mathbf{H}^{\mathrm{T}} \mathbf{H}) \Rightarrow$$

$$G_{ij} := \frac{1}{2} (H_{ij} + H_{ji} + H_{ki} H_{kj}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right)$$

$$G^* := \frac{1}{2} \left(\mathbf{H}^* + \mathbf{H}^{*\mathrm{T}} - \mathbf{H}^{*\mathrm{T}} \mathbf{H}^* \right) \Rightarrow$$

$$G^*_{ij} := \frac{1}{2} \left(H^*_{ij} + H^*_{ji} - H^*_{ki} H^*_{kj} \right) = \frac{1}{2} \left(\frac{\partial u_i}{\partial y_j} + \frac{\partial u_j}{\partial y_i} - \frac{\partial u_k}{\partial y_i} \frac{\partial u_k}{\partial y_j} \right)$$

$$(8a)$$

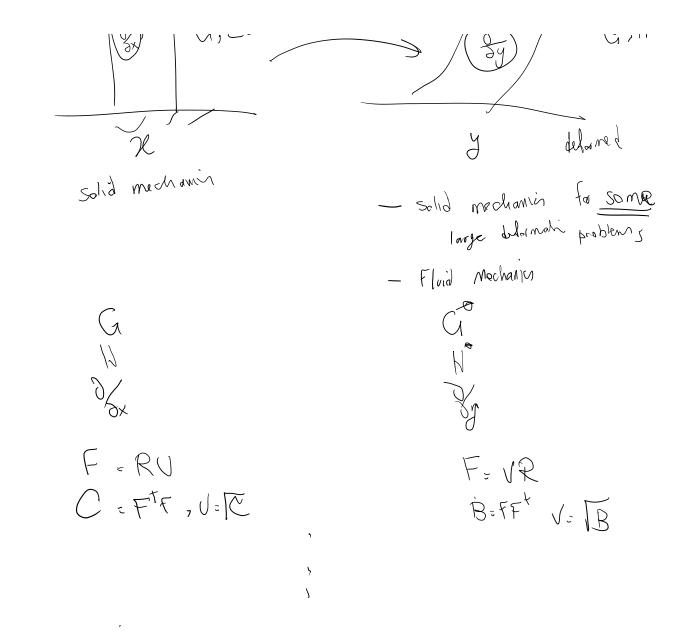
$$G^*_{ij} := \frac{1}{2} \left(\mathbf{H}^*_{ij} + H^*_{ji} - H^*_{ki} H^*_{kj} \right) = \frac{1}{2} \left(\frac{\partial u_i}{\partial y_j} + \frac{\partial u_j}{\partial y_i} - \frac{\partial u_k}{\partial y_i} \frac{\partial u_k}{\partial y_j} \right)$$

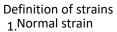
$$(8b)$$

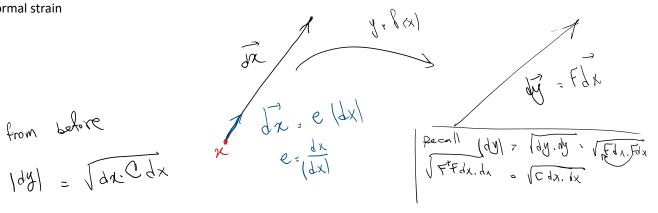
$$G^*_{ij} := \frac{1}{2} \left(H^*_{ij} - H^*_{ki} H^*_{kj} \right) = \frac{1}{2} \left(\frac{\partial u_i}{\partial y_j} + \frac{\partial u_j}{\partial y_i} - \frac{\partial u_k}{\partial y_i} \frac{\partial u_k}{\partial y_j} \right)$$

$$(9a)$$

$$(9a$$

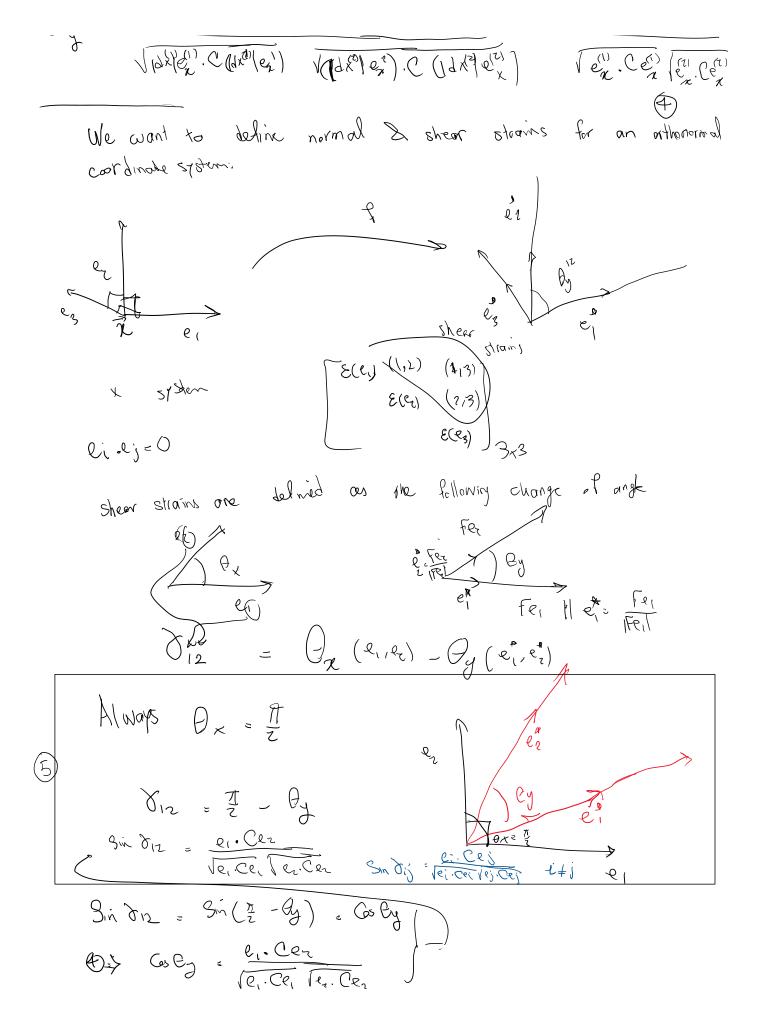






(2) Shain along
$$e$$
 (a) base book x is belied as
 $E(x, e) = \frac{|x|| - |x||}{|x||} - \frac{|x||}{|x||} - \frac{|x||}$

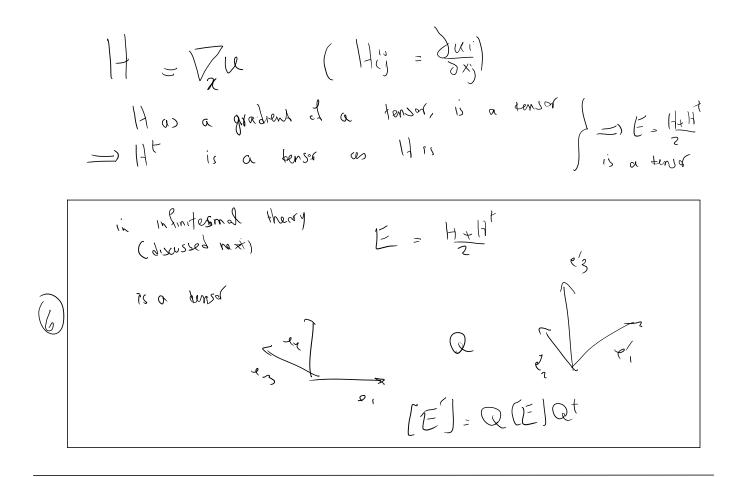
ME536 Page 3



What if we put all these strains in a matrix?

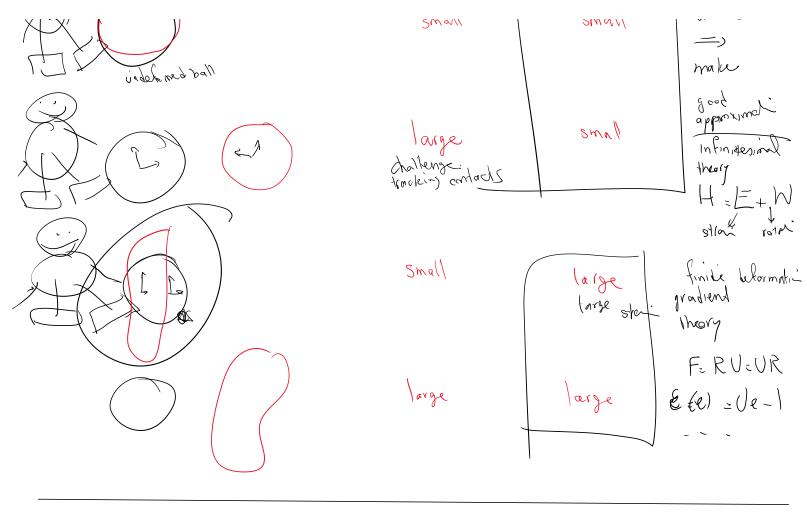
$$\begin{array}{c} \partial_{ij} \cdot \partial_{ji} \in \widetilde{E} \\ = \\ \begin{cases} \mathcal{E}(e_1) & \mathcal{E}(e_1) & \partial_{13} \\ \partial_{2i} & \mathcal{E}(e_1) & \partial_{23} \\ \partial_{3i} & \partial_{32} & \mathcal{E}(e_3) \\ \end{cases} \\ \begin{array}{c} \mathcal{E}(e_1) & \mathcal{E}(e_1) \\ \mathcal{E}(e_2) & \mathcal{E}(e_3) \\ \mathcal{E}(e_3) & \mathcal{E}(e_3) \\ \mathcal{E}(e_3)$$

ME536 Page 5



Why the normal and the shear strains we defined can be approximated by the E tensor?





We want to approximatate
$$\mathcal{E}(e_i)$$
 $\frac{\tilde{d}_i}{z}$

Definition 83 Let φ, θ be real-valued functions of a displacement gradient field **H** derived from a deformation **f**. Then φ is of order ε^n (or big of of ε^n), denoted

$$\varphi = O\left(\varepsilon^n\right),$$

iff $\exists K \in \Re$, independent of \mathbf{H} , \ni

 $|\varphi(\mathbf{H})| \leq K\varepsilon^n \ \forall \ admissible \ \mathbf{H}.$

Definition 116 Let $\Psi : A \subset \operatorname{Lin} \mathcal{V} \to \Re$ have the property $\Psi(0) = 0$, and let $\varepsilon := \|\mathbf{A}\|$, $\mathbf{A} \in A$.¹⁰ Then we say that Ψ is little of ε ,¹¹ denoted

$$\Psi(\mathbf{A}) = o(\varepsilon) \ as \ \varepsilon \to 0,$$

iff

$$\lim_{\substack{\varepsilon \to 0\\ \varepsilon \neq 0}} \frac{|\Psi(\mathbf{A})|}{\varepsilon} = 0.$$