
ME536: Continuum Mechanics HW6: Kinematics (170 + 60 e.c. points)

1. (4 × 20 = 80 Points) Lagrangian and Eulerian strains: Remember that right and left polar
decompositions of F = RU = VR,

U =
√
C =

3∑
i=1

λiui ⊗ ui Right stretch (useful Referential / Lagrangian conf.) (1a)

V =
√
B =

3∑
i=1

λivi ⊗ vi Left stretch (useful Spatial / Eulerian conf.) (1b)

where C = FTF and B = FFT, λi are eigenvalues of both U,V (why the have the same eigenval-
ues?) and ui,vi = Rui are orthonormal eigenvectors of U,V. General Referential (Lagrangian)
ε and Spatial (Eulerian) ε∗ strains are defined by,

ϵe := e(U) =
3∑

i=1

e(λi)ui ⊗ ui Referential (Lagrangian) (2a)

ϵ∗e := e(V) =

3∑
i=1

e(λi)vi ⊗ vi Spatial (Eulerian) (2b)

for the function e satisfying,

e(1) = 0 (3a)

e′(1) = 1 (3b)

e′(λ) > 0 for all λ > 0 (so e is an increasing function (3c)

Lagrangian strain approximates (or is equal to if e(λ) = λ− 1) (|dy| − |dx|)/|dx| while Eulerian
strain approximates (or is equal to if e(λ) = 1−λ−1) (|dy|−|dx|)/|dy|. To circumvent calculating
square roots U and V we can use eg(λ) = (λ2 − 1)/2 ≈ (λ − 1) for λ ≈ 1 for Lagrangian and
eg∗(λ) = (1− λ−2)/2 ≈ 1− λ−1 (for λ ≈ 1).

(a) Show that Strain tensors corresponding to eg and eg∗ are Green G and Almansi G∗ tensors,

G := eg(U) =
1

2
(C− I) (4a)

G∗ := eg∗(V) =
1

2

(
I−B−1

)
(4b)

(b) Consider reference differential (change of) position dx and its spatial (change of) position
dy related by dy = Fdx. By direct substitution dy = Fdx (i.e., you cannot simply use (4))
show that,

εg(x, ex) =
1

2

|dy|2 − |dx|2

|dx|2
= ex.Gex, ex =

dx

|dx|
(5a)

εg∗(y, ey) =
1

2

|dy|2 − |dx|2

|dy|2
= ey.G

∗ey, ey =
dy

|dy|
(5b)

where εg(x, ex) is the referential (Lagrangian) strain for direction ex and position x in ref-
erential configuration and function eg; similarly εg∗(y, ey) is the spatial (Eulerian) strain for
direction ey and position y in spatial configuration and function eg∗ .
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(c) In referential and spatial configurations functions are represented in terms of x and y, re-
spectively. Strains involve (referential or spatial) gradients of deformation/displacement.
Referential (H) and spatial (H∗) displacement gradients are

H = ∇xu, that is Hij =
∂ui(x, t)

∂xj
(6a)

H∗ = ∇yu, that is H∗
ij =

∂ui(y, t)

∂yj
(6b)

where u = y − x is displacement field. Show the following in order,

H = F− I (7a)

H = H∗F (7b)

H∗ = I− F−1 directly by u = y − x (preferred) or using the last two equations (7c)

(d) Expansion of G and G∗: Using (4) show,

G :=
1

2

(
H+HT +HTH

)
⇒ (8a)

Gij :=
1

2
(Hij +Hji +HkiHkj) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
G∗ :=

1

2

(
H∗ +H∗T −H∗TH∗

)
⇒ (8b)

G∗
ij :=

1

2

(
H∗

ij +H∗
ji −H∗

kiH
∗
kj

)
=

1

2

(
∂ui
∂yj

+
∂uj
∂yi

− ∂uk
∂yi

∂uk
∂yj

)
Note: As we will observe Cauchy stress tensor T(y, t) is naturally expressed in spatial coor-

dinate and the equation of motion divT +ρ0b =
Dρ0v
Dt is also written for spatial configuration.

The operator “div” is spatial divergence divT =
∂Tij(y,t)

∂yj
. Clearly, in spatial configuration,

T expressed in terms of a spatial strain measure such as G∗ in (8b) simplifies the equation
of motion as eventually two level derivatives on u will be all on spatial coordinate y. On the
other hand, by pulling T back to referential configuration, i.e., Piola-Kirchhoff stress ten-
sors, we will be dealing with referential divergence (Div) and strain measures with referential
displacement gradient, such as G (8b), are the appropriate choice. In solid mechanics, we
often express equations in referential configuration.

2. (a,b,c extra credit: (3 × 20 = 60 Points), d,e (2 × 20 = 40 Points)) Small deformation
gradient: Let us consider a infinitesimal deformation gradient problem, i.e., H = O(ϵ), ϵ ≪ 1.
We define linearized strains,

E :=
1

2

(
H+HT

)
⇒ Eij =

1

2
(Hij +Hji) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(9a)

E∗ :=
1

2

(
H∗ +H∗T

)
⇒ E∗

ij =
1

2

(
H∗

ij +H∗
ji

)
=

1

2

(
∂ui
∂yj

+
∂uj
∂yi

)
(9b)

Clearly, G = E + O(ϵ2) and G∗ = E∗ + O(ϵ2). We want to show that in fact all strains defined
by (2) are equal to E,E∗ within O(ϵ2).

(a) Show that,
H∗ = H+O(ϵ2) ⇒ E∗ = E+O(ϵ2) (10)

Hint: To show the first part, use (7b) and note F−1 = (I + H)−1 = I − H + O(ϵ2). The
second part immediately follows.
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(b) Show that λi−1 = O(ϵ) where λi are eigenvalues ofU (andV). You can useU = I+E+O(ϵ2)
(the last relation can be relatively easily shown, but you do not need to prove it). Then, use
the relation Uui = (I+E+O(ϵ2))ui = λiui (no summation on i).

(c) Use Taylor expansion of e(λ) around 1: e(λ) = e(λ−1+1) = e(1)+(λ−1)e′(1)+ (λ−1)2

2 e′′(1)+
H.O.T. and (2), (3) to show that,

ϵe = e(U) = U− I+O(ϵ2) = E+O(ϵ2) = E∗ +O(ϵ2) (11a)

ϵ∗e = e(V) = V − I+O(ϵ2) = E∗ +O(ϵ2) = E+O(ϵ2) (11b)

You do not need to show (11b) and only (11a) suffices. The proof for the former follows
exactly the same line as done in this part and previous parts of this question for E,H,U.
Note: We observe that all strain measures satisfying (2), (3) are equal to E+O(ϵ2) =
E∗ +O(ϵ2). So, under infinitesimal deformation gradient conditions all strain measures are
equivalent to within O(ϵ2). In addition, for any strain e we have εe(x, ex) = ε∗e(x, ex) =(
|dy|−|dx|

|dx|

)
(i.e., our initial definition of Lagrangian length-based strain) + O(ϵ2); for an

example, it is easy to observe that
(
|dy|+|dx|

2|dx|

)
= 1 + O(ϵ) in (5). One can also show that

ϵeij and ϵ∗eij , i ̸= j is half of the angle change between orthogonal directions ei, ej again to

within O(ϵ2).

(d) Infinitesimal change of volume / Volumetric strain: Show that,

J = detF = 1 + trace(H) +O(ϵ2) = 1 + trace(E) +O(ϵ2) ⇒

ϵv :=
dVy − dVx

dVx
= trace(E) +O(ϵ2) (12)

(e) Infinitesimal change of area. We have dAy = JF−TdAx. Show that under infinitesimal
deformation,

dAy = JF−TdAx = dAx +
[
(traceE)I−HT

]
dAx ++O(ϵ2) (13)

3. (30 Points) Exercise 76.

4. (20 Points) Show that,

DJ

Dt
:= J̇ = Jdivv, where divv = trace(∇yv). (14)

Hint: Use (15) for A = F and α = t. Note that this identity was proven during the class.

Exercise problems for your practice (DO NOT need to return them)

1. Exercise 75. Also show that the given strain field is compatible. For the use of cases where we
need to derive displacement from strain field and applications of Airy stress functions refer to
resources provided at the course webpage.

2. Show,

d(detA)

dα
= trace

(
dA

dα
A−1

)
detA α any argument (dependency) of A such as time t (15)

Hint: In Abeyaratne Vol I. Exercise 3.7 (page 65) a novel proof of this equation is provided. You
can fill out the missing parts in the proof (if any).
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3. Different strain measures: Saouma Example 4-7 (page 88).

4. Relation between x and y: Saouma Example 4-2 (page 78).

Reading assignment: Detailed exposure to topics discussed or those not covered in the class

� Strain: Abeyatratne Vol II sections (2.6), 2.7, 2.8; Saouma sections 4.2.3, 4.2.4 (particularly
4.2.3.1.2, 4.2.4.2.1, 4.2.3.2.2, Table 4.1 and equation 4.2), 4.2.5.

� Rates of changes of length, angle and area: You can refer to any of the recommended
textbooks to read more about this topic. Sections “3.3 Velocity Gradient, Stretching and Spin
Tensors.” and “3.4 Rate of Change of Length, Orientation, and Volume” from Abeyaratne Vol II
are good references for this topic.

– Review “Worked Examples”: Problems 3.4, 3.5, and 3.7 in that section.

http://rezaabedi.com/teaching/continuum-mechanics/ 4

http://rezaabedi.com/teaching/continuum-mechanics/

