1. ($\mathbf{3 0}$ Points) Exercise 77 (Transport theorem for vector fields). You cannot use Transport theorem for scalars (Theorem 145) as proven (still can follow a similar line of proof to show the first identity).
2. (30 Points) Exercise 83.
3. (10 Points) Exercise 89.
4. (30 Points) Exercise 96.
5. $(\mathbf{2 0}+40+40=100$ Points) Transfer between rate, gradient, divergence of quantities in referential and temporal coordinate systems.
Consider the n^{\prime} th order tensor field \mathbf{T},

$$
\begin{equation*}
\mathbf{T}=T_{i_{1} \cdots i_{n}} \mathbf{e}_{i_{1}} \otimes \cdots \mathbf{e}_{i_{n}} \tag{1}
\end{equation*}
$$

We want to show the following,

$$
\begin{align*}
\frac{\mathrm{DT}}{\mathrm{D} t} & =\frac{\partial \hat{\mathbf{T}}}{\partial t}+\operatorname{grad} \hat{\mathbf{T}} \hat{\mathbf{v}} & \left.\frac{\mathrm{D} T_{i_{1} \cdots i_{n}}}{\mathrm{D} t}\right|_{\mathbf{x}} & =\left.\frac{\partial \hat{T}_{i_{1} \cdots i_{n}}}{\partial t}\right|_{\mathbf{y}}+\frac{\partial \hat{T}_{i_{1} \cdots i_{n}}}{\partial y_{k}} \hat{v}_{k} \tag{2a}\\
\operatorname{Grad} \mathbf{T} & =\operatorname{grad} \hat{\mathbf{T}} \cdot \mathbf{F} & \frac{\partial T_{i_{1} \cdots i_{n}}}{\partial x_{j}} & =\frac{\partial \hat{T}_{i_{1} \cdots i_{n}}}{\partial y_{k}} F_{k j} \tag{2b}\\
\operatorname{Div} \mathbf{T} & =J \operatorname{div}\left(\hat{\mathbf{T}} \cdot \mathbf{F}^{\mathrm{T}} / J\right) & \frac{\partial T_{i_{1} \cdots i_{n}}}{\partial x_{i_{n}}} & =J \frac{\partial\left(\hat{T}_{i_{1} \cdots i_{n}} F_{j i_{n}} / J\right)}{\partial y_{j}} \tag{2c}
\end{align*}
$$

Note that Div and Grad equations can also be written as,

$$
\begin{align*}
\operatorname{grad} \hat{\mathbf{T}} & =\operatorname{Grad} \mathbf{T} \cdot \mathbf{F}^{-1} & \frac{\partial \hat{T}_{i_{1} \cdots i_{n}}}{\partial y_{k}} & =\frac{\partial T_{i_{1} \cdots i_{n}}}{\partial x_{j}} F_{j k}^{-1} \tag{3a}\\
\operatorname{Div}\left(J \mathbf{T F}^{-\mathrm{T}}\right) & =J \operatorname{div} \hat{\mathbf{T}} & \frac{\partial J T_{i_{1} \cdots i_{n}} F_{j i_{n}}^{-1}}{\partial x_{j}} & =J \frac{\partial \hat{T}_{i_{1} \cdots i_{n}}}{\partial y_{i_{n}}}
\end{align*}
$$

We have proven all relations in the class, possibly with different approaches than in this homework assignment.
(a) Grad: Show 2b) holds.
(b) $\operatorname{Div}(n \geq 1)$: Show that,

$$
\begin{align*}
\operatorname{Div}\left(J \mathbf{T} \mathbf{F}^{-\mathrm{T}}\right) & =J \operatorname{Grad} \mathbf{T}: \mathbf{F}^{-1}+\mathbf{T} \cdot \operatorname{Div}\left(J \mathbf{F}^{-\mathrm{T}}\right) \\
& =J \operatorname{div} \hat{\mathbf{T}}+\mathbf{T} \cdot \operatorname{Div}\left(J \mathbf{F}^{-T}\right) \tag{4}
\end{align*}
$$

The products . and : (not to be confused with 2nd order tensor inner product) are used to denote one and two level contractions. For example:

$$
\begin{aligned}
\operatorname{Grad} \mathbf{T}: \mathbf{F}^{-1} & =\frac{\partial T_{i_{1} \cdots i_{n}}}{\partial x_{j}} F_{j i_{n}}^{-1} \mathbf{e}_{i_{1}} \otimes \cdots \otimes \mathbf{e}_{i_{n-1}} \\
\mathbf{T} \cdot \operatorname{Div}\left(J \mathbf{F}^{-\mathrm{T}}\right) & =T_{i_{1} \cdots i_{n}}\left(\frac{\partial J F_{j i_{n}}^{-1}}{\partial x_{j}}\right) \mathbf{e}_{i_{1}} \otimes \cdots \otimes \mathbf{e}_{i_{n-1}}
\end{aligned}
$$

You first need to prove line one of (4) by using product rule for derivatives. Group terms as \mathbf{T} and $J \mathbf{F}^{-\mathrm{T}}$. Then prove line two by using 2 b$)$ and showing $(\operatorname{grad} \hat{\mathbf{T}} \cdot \mathbf{F}): \mathbf{F}^{-1}=\operatorname{div} \hat{\mathbf{T}}$.
(c) Show

$$
\begin{equation*}
\operatorname{Div}\left(J \mathbf{F}^{-T}\right)=0 \tag{5}
\end{equation*}
$$

Hint: Use,

$$
\begin{equation*}
F_{p k}^{-1}=\frac{1}{2 \operatorname{det} \mathbf{F}} \epsilon_{i j k} \epsilon_{m n p} F_{i m} F_{j n} \quad \Rightarrow \frac{\partial J F_{k p}^{-\mathrm{T}}}{\partial x_{p}}=\frac{1}{2} \epsilon_{i j k} \epsilon_{m n p} \frac{\partial F_{i m} F_{j n}}{\partial x_{p}} \tag{6}
\end{equation*}
$$

then use antisymmetry of permutation symbol and symmetry of second derivatives to show this term is zero.
(d) (0 Points) By previous two results (4), (5) we have proved (3b). Once can easily prove (2c) from (3b) by appropriate choice of \mathbf{T}. This completes the proof for div. We often deal with div operations of the form (3b) rather than (2c); e.g., Piola-Krichhoff stress tensors.

Exercise problems for your practice (DO NOT need to return them)

1. Calculation of traction from stress tensor: Example 2-1 Saouma (page 40/263).
2. Stress transformation (change of coordinate): Example 2-3 Saouma (page 40/263).
3. Abeyaratne vol II Problem 4.15 on Cauchy stress and traction vector.

Reading assignment: Detailed exposure to topics discussed or those not covered in the class

1. balance laws:

(a) Transport equation: Section "3.7 Transport Equations" from Abyaratne vol II, particularly equations (3.84), (3.85), (3.86), (3.89).
(b) Density of physical fields and path to formulating a balance law: Useful reference Abeyaratne Vol II, 1.8 Extensive Properties and their Densities.
(c) Formulation of balance laws

- Chapter 4 "Mechanical Balance Laws and Field Equations" (particularly equation 4.2).
- Section 6.1.1. (balance laws) \& 6.1.2 (fluxes) Saouma.
(d) Direct expression of balance laws in space and time (from my FEM course): http://rezaabedi.com/wp-content/uploads/Courses/ContinuumMechanics/BalanceLaws.pdf
(e) Jump conditions: Useful resources are
- Section "6 Singular Surfaces and Jump Conditions" of Abeyaratne vol II is a good resourse for this topic.

2. Kinetics: Useful resources are:
(a) Reference configurations and linearization: Sections "4.8 Formulation of Mechanical Principles with Respect to a Reference Configuration" and "4.10 Linearization" from Abyaratne vol. II.
(b) Stress power Section "4.9 Stress Power" from Abyaratne.
(c) Calculation of traction from stress tensor: Example 2-1 Saouma (page 40/263).
