
ME536: Continuum Mechanics HW9: Constitutive equations (250 + 30 (e.c.) points) Due: 12/2/19

For linear elastic solid, under small deformation, cauchy stress T and strain E are related by,

T = CE ⇒ Tij = CijklEkl (1)

where for the assumed hyperelastic material C satisfies major and minor symmetries Cijkl = Cjikl =
Cijlk = Cklij .

Figure 1: Two coordinate systems {e1, e2} and {e′1, e′2} at relative angle θ.

Coordinate transformation from (x, y) to (x′1, x2′) coordinate system in 2D stipulates,

C ′ijkl = QimQjnQkpQlqCmnpq (2)

where for the coordinate systems shown we have,

Q =

[
e′1
e′2

]
=

[
c s
−s c

]
for c = cos(θ), s = sin(θ) (3)

1. (40 Points) Express C ′1111, C
′
1122, C

′
1112, C

′
2222, C

′
2221, and C ′1212 in terms of C1111, C1122, C1112,

C2222, C2221, and C1212.

Hint: Use the major and minor symmetries of C and (2). For example, for C ′1111 we have,

C ′1111 = c4C1111 + 2c2s2C1122 + 4c3sC1112 + s4C2222 + 4cs3C2221 + 4c2s2C1212 (4)

Express C ′1122, C
′
1112 (and ideally the remaining 3) independent components of [C′] in terms of 6

independent components of [C].

2. (20 Points) Voigt stress and strain arrays in 2D are expressed as,

σ =

T11T22
T12

 , γ =

 E11

E22

2E12

 (5)

The Voigt stiffness matrix in 2D is,

σ = Sγ that is,

T11T22
T12

 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

 E11

E22

2E12

 (6)
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Show that,

S11 = C1111 (7a)

S12 = S21 = C1122 (7b)

S13 = S31 = C1112 (7c)

S22 = C2222 (7d)

S23 = S32 = C2221 (7e)

S33 = C1212 (7f)

You don’t need to show the symmetry of S. That is, you just need to show S12 = C1122 instead
of S12 = S21 = C1122 and the same for the other off diagonals. It suffices to show identities
(7)(a,b,c,f).

Hint: Expand (1) in 2D and relate it to (6) to show (7).

3. (30 Points) Show that Components of Voigt stiffness in (x′1, x2′) can be written in terms of its
components in (x1, x2) as shown below (it is sufficient to only show identities for S′11 and S′12),

S′11 = c4S11 + 2c2s2S12 + 4c3sS13 + s4S22 + 4cs3S23 + 4c2s2S33 (8a)

S′12 = c2s2S11 + (c4 + s4)S12 − 2cs(c2 − s2)S13 + c2s2S22 + 2cs(c2 − s2)S23 − 4c2s2S33 (8b)

S′13 = −c3sS11 + cs(c2 − s2)S12 + c2(c2 − 3s2)S13 + cs3S22 + s2(3c2 − s2)S23 + 2cs(c2 − s2)S33
(8c)

S′11 = s4S11 + 2c2s2S12 − 4cs3S13 + c4S22 − 4c3sS23 + 4c2s2S33 (8d)

S′23 = −cs3S11 − cs(c2 − s2)S12 + s2(3c2 − s2)S13 + c3sS22 + c2(c2 − 3s2)S23 − 2cs(c2 − s2)S33
(8e)

S′33 = c2s2S11 − 2c2s2S12 − 2cs(c2 − s2)S13 + c2s2S22 + 2cs(c2 − s2)S23 + (c2 − s2)2S33 (8f)

where

[S′] = Rθ(S) =

S′11 S′12 S′13
S′12 S′22 S′23
S′13 S′23 S′33

 (9)

the notation Rθ(S) is used later.

Hint: Use (4) (and other 5 similar equations from that problem) and (7).

4. Cubic material: Cubic materials are special orthotropic materials that are invariant with respect
to 90◦ rotations with respect to the principal axes. In 2D elasticity, this means that under 90◦

rotations, the components of constitutive equation do not change. That for θ = 90◦, S′ab = Sab
for a, b ∈ {1, 2, 3}.

(a) (30 Points) From (8) show that for the material to be cubic we need to have,

S22 = S11 (10a)

S23 = −S13 (10b)

that is, instead of 6 independent components S has only 4 independent components (S11,
S12, S13, S33).

(b) (30 Points) (extra credit) Principal axes: Show that if θ = θp the shear-normal coupling
terms of stiffness matrix are zero. That is, for

tan 4θp =
4S13

S11 − S12 − 2S33
(11)
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the expression of S in (x′1, x
′
2) system is (S′13 = S′23 = 0),

[S′] =

S′11 S′12 0
S′12 S′11 0
0 0 S′33

 (12)

5. (30 Points) Isotropy: An isotropic elastic material is one that for any angle of rotation the
constitutive equation does not change. That is, for any θ the components of S′ are equal to
components of S. Clearly, an isotropic material is cubic (as the constitutive relation remains
invariant with respect to 90◦ angle rotations). So, we can start by using (10) (starting with
S22 = S11, S12, S23 = −S13, and S33). Show that for isotropic material, we can further show,

S33 =
S11 − S12

2
(13a)

S23 = S13 = 0 (13b)

Thus, the stiffness is, S11 S12 0
S12 S11 0
0 0 S33

 , for S33 =
S11 − S12

2
(14)

Note that Zener index Z = 2S33
S11−S12

= 1 for isotropic materials.1

Hint: Starting from 4 independent components as discussed above, refer to (8) and use θ = 45◦

and match the following identities S′33 = S33 and S′13 = S13. You do not need to show that
other components will remain unchanged for 45◦ rotation and in fact all components remaining
unchanged for any other arbitrary rotation.

6. (30 Points) In many crystalline materials there are one or multiple forms of grain with arbitrary
angles for the principal axes. If there is no angular bias in principal axes of these grains, the
macroscopic material is isotropic. If the grains all have the same (anisotropic) stiffness but with
different orientations (which is uniformly distributed in angle) the isotropic limit of stiffness can
be expressed as2,

Siso =
1

2π

∫ 2π

θ=0
Rθ(S)dθ (15)

where Rθ(S) would be the stiffness of the base material if rotated by angle −θ. Show that, the
components of isotropic stiffness are,

Siso
11 = Siso

22 =
3

8
(S11 + S22) +

1

4
S12 +

1

2
S33 (16a)

Siso
12 = Siso

21 =
1

8
(S11 + S22) +

3

4
S12 −

1

2
S33 (16b)

Siso
33 =

1

8
(S11 + S22)−

1

4
S12 +

1

2
S33 (16c)

Siso
13 = Siso

31 = Siso
23 = Siso

32 = 0 (16d)

You just need to show the identity for Siso
11 and Siso

12 . Note that Siso is clearly isotropic with Zener
index 1.

7. (50 Points) Numerical calculation 1:

1Zener anisotropy index is defined for cubic materials, which as shown in (12) has 3 independent parameters once
represented in its principal axes. Zener index expresses how anisotropic a cubic material is.

2There are more details about this that are not discussed here.
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(a) The components of S in (x1, x2) coordinate system are,

[S] =

 1.412500000000000 0.087500000000000 −0.238156986040721
0.087500000000000 1.412500000000000 0.238156986040721
−0.238156986040721 0.238156986040721 0.387500000000000

 (17)

It this material cubic? If so, express for what θp it is expressed in its principal form (so that
components S′13 = S′23 = 0). Express the components of S for (x′1, x

′
2) that would correspond

to the principal axes and compute the Zener’s index (if applicable).

(b) Express the components (17) in (x′1, x
′
2) coordinate system for θ = 30◦. If it is cubic, express

the Zener index for it. What is the relation of this Zener index and that from the previous
case (if this material is cubic).

8. Numerical calculation 2: Consider the stiffness below,

[S] =

1.5 0.5 0.3
0.5 1 0.1
0.3 0.1 0.8

 (18)

Compute (20 Points) Siso.

Reading assignment: Detailed exposure to topics discussed or those not covered in the class

1. Energy related material:

(a) Virtual work: Abeyaratne Vol II, Problem 4.18, page 143.

(b) Energy conjugates: Abeyaratne Vol II, Problem 4.20, 4.22, 4.23: pages 143-145.

2. Constitutive equation:

(a) Nonlinear isotropic solid: Abeyaratne Vol II, 8.5.2.1, page 238.

(b) Compressive fluid: Abeyaratne Vol II, 8.7.1, page 223.

(c) Popular nonlinear solid constitutive models: Abeyaratne Vol II, 8.7.2 (neo-Hookean),
8.7.4 (Incompressible isotropic solid).

(d) 6× 6 stiffness matrix (Voigt notation): This 6× 6 stiffness matrix is easier to use than
3× 3× 3× 3 elasticity tensor. Refer to section 2 (pages 10-15) of http://rezaabedi.com/wp-
content/uploads/2014/04/Elastostatics.pdf

(e) Various anisotropy models for linear elasticity: Saouma 7.3.1 Anisotropy, 7.3.2 Monotropic,
7.3.3 Orthotropic, 7.3.4 Transversely Isotropic, 7.3.5 Isotropic.
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