1. Axis and eigenvalues of an orthogonal transformation. (30 Points)

- (a) If λ is an eigenvalue of an orthogonal tensor **Q** show that $|\lambda| = 1$.
- (b) To complete the determination of eigenvalues of orthogonal tensors show that
 - i. A proper orthogonal tensor has an eigenvalue of 1. The corresponding eigenvector \mathbf{u} is called the axis of \mathbf{Q} .

Hint: For an eigenvalue of λ we have $\det(\mathbf{Q} - \lambda \mathbf{I}) = 0$. So, for $\lambda = 1$ we need to show $\det(\mathbf{Q} - \mathbf{I}) = 0$. To do this, expand $\det[\mathbf{Q}^{\mathrm{T}}(\mathbf{Q} - \mathbf{I})]$ two ways: One use determinant of product rule and the other evaluate the determinant of the term directly, use $\det \mathbf{Q} = 1$ (proper orthogonal) to show $\det(\mathbf{Q} - 1\mathbf{I}) = 0$.

ii. Show that an improper orthogonal tensor has an eigenvalue of -1. Again, the corresponding eigenvector \mathbf{u} is called the axis of \mathbf{Q} .

Hint: Use a similar proof to proper orthogonal tensors, but this time use $\mathbf{Q} + \mathbf{I}$.

(c) We will eventually show that an orthogonal tensor can be written as,

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & \pm 1 \end{bmatrix}$$
(1)

where + and - signs correspond to proper and improper orthogonal tensors, respectively, and direction \mathbf{e}_3 is aligned with the axis of \mathbf{Q} , \mathbf{Q} .

We already discussed that one eigenvalue is ± 1 which corresponds to eigenvector $\mathbf{u} = \mathbf{e}_3$. By using $\det(\mathbf{Q} - \lambda \mathbf{I}) = 0$, as the equation of the eigenvalue of \mathbf{Q} show that in fact ± 1 is the only real eigenvalue for a proper/improper orthogonal tensor.

- 2. Orthonormality condition (10 Points): Using $\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\mathrm{T}} = \mathbf{I}$ show that vectors formed by columns (which are $\mathbf{c}^{i} = \mathbf{Q}\mathbf{e}_{i}$ and rows (which are formed by $\mathbf{r}^{i} = \mathbf{Q}^{\mathrm{T}}\mathbf{e}_{i}$) are orthonormal: $\mathbf{r}^{i}.\mathbf{r}^{j} = \delta^{ij}$, $\mathbf{c}^{i}.\mathbf{c}^{j} = \delta^{ij}$.
- 3. Representation of an orthogonal tensor (70 Points): To obtain (1) we start with a representation of **Q** such that axis of **Q** is aligned with coordinate system **e**₃ unit vector as shown in fig. 3. The components of **Q** in this orthonormal coordinate system is shown below:

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix}$$
 (2)

(a) Show that the last column of ${\bf Q}$ is $[0\ 0\ \pm 1]^{\rm T}$ (+ for proper orthogonal and - for improper orthogonal).

Hint: Since \mathbf{e}_3 is aligned with the axis of \mathbf{Q} it is an eigenvector with eigenvalue of ± 1 . Use the fact that column 3 (\mathbf{c}^3) is the image of \mathbf{Q} on \mathbf{e}_3 ($\mathbf{Q}\mathbf{e}_3$).

(b) Show that $Q_{31} = Q_{32} = 0$ (unknowns of the third row). After these two steps **Q** looks like:

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$
 (3)

Hint: Use orthonormality of columns (or rows?) of Q.

(c) Show that $|Q_{11}| \leq 1$, again using orthonormality property, and subsequently show that an angle θ exists such that $Q_{11} = \cos(\theta)$, $Q_{21} = \sin(\theta)$.

Figure 1: A coordinate system such that e_3 is aligned with the axis of an orthogonal tensor \mathbf{Q} .

- (d) Finally, show that $Q_{12} = -\sin(\theta)$ and $Q_{22} = \cos(\theta)$. **Hint:** Again use orthonormality condition. This will not determine Q_{i2} with a factor ± 1 . What condition should we use to further narrow down these two values to the one given?
- (e) After plugging remaining values of Q_{ij} , we obtain (1). Discuss why the values \mathbf{Qe}_1 , \mathbf{Qe}_2 shown in the figure, which correspond to rotation with angle θ , are consistent with \mathbf{Qe}_1 , \mathbf{Qe}_2 from (1).

Hint: Use the fact that columns of a tensors are images of the tensor on unit vectors of the corresponding coordinate system.

- (f) What is the image of this orthonormal tensor on e_3 for proper and improper cases?
- (g) From previous two questions, summarize what proper / improper orthogonal tensors represent.
- 4. Axis and angle of rotation (60 Points): From previous question we observe an orthogonal tensor is a rotation plus possibly another operation (to be specified by you). The question is how to determine the axis (of rotation) and angle of rotation. If the tensor is represented in a coordinate system such that \mathbf{e}_3 is aligned with axis of \mathbf{Q} , denoted by $\mathrm{ax}(\mathbf{Q})$, the answer is easy, but we want to answer these questions in general case. You can assume \mathbf{Q} is only a rotation (i.e., proper orthogonal det $\mathbf{Q} = 1$). I will present two approaches: Method A will follow from the development above but has a pitfall, and Method B addresses that issue.
 - (a) Method A (Using eigenvalues and one of the "fundamental invariants" of Q):
 - i. Using the eigenvalue analysis above show how we can obtain the axis of rotation $ax(\mathbf{Q})$.
 - ii. By looking at "fundamental invariants" of tensor \mathbf{Q} find one that can determine the angle of rotation.

Hint: You may refer to the representation of \mathbf{Q} in the coordinate system where \mathbf{e}_3 is aligned with $\mathrm{ax}(\mathbf{Q})$, cf. (1), and evaluate fundamental invariants for that.

iii. Can we uniquely identify angle of rotation θ or we obtain it with a sign ambiguity in the form $\pm \theta$ using the fundamental invariant chosen? What is the interpretation of this? Do we need to change the axis of rotation if the sign of the angle is reversed?

- (b) Method B (Using skew part of **Q**). This approach is more robust and provides the angle of rotation with no ambiguity.
 - i. Show that given the angle of rotation θ and axis of rotation $ax(\mathbf{Q}) := \mathbf{a}$, we can express \mathbf{Q} as.

$$\mathbf{Q} = \cos \theta \mathbf{I} + (1 - \cos \theta) \mathbf{a} \otimes \mathbf{a} + \sin \theta \mathbf{a} \mathbf{x}(\mathbf{a}) \tag{4}$$

where axa is the skew-symmetric tensor formed by a. **Hint**: Try to demonstrate this for **one** coordinate system (e.g., when \mathbf{e}_3 is aligned with ax(\mathbf{Q})) then given that both sides are tensor (follow tensorial transformation rules) we can claim showing (4) irrespective to the choice of coordinate system.

Equation (4) is a very useful identity for expressing \mathbf{Q} in a given coordinate when angle, and axis of rotation are provided in that coordinate system.

- ii. Taking the trace of both sides of the equation (4) obtain an equation for the angle θ under the condition $0 \le \theta < \pi$. This will uniquely identify the value $\sin(\theta) \ge 0$.
- iii. By taking the transpose of (4) and forming skew (\mathbf{Q}) show that,

$$\mathbf{a} = \operatorname{ax}(\mathbf{Q}) = \frac{1}{\sin \theta} \operatorname{ax} \left[\operatorname{skew}(\mathbf{Q}) \right]$$
 (5)

thus a way to uniquely identify θ and $ax(\mathbf{Q})$ without the sign ambiguity of the first approach.

Note: In the matlab code provided in the next question, you will observe the application of both methods discussed in this question.

- 5. Product of orthogonal tensors (60 Points): If \mathbf{Q}_1 and \mathbf{Q}_2 are orthonormal tensors $\mathbf{Q}_2\mathbf{Q}_1$ means we first apply \mathbf{Q}_1 on a vector followed by \mathbf{Q}_2 acting on the resultant from the first operation.
 - (a) Fill out the following sentences (only provide words for V1 to V5 in your answers). Product of two orthogonal tensors is $a(an) \cdots V1 \cdots$ tensor representing one $\cdots V2 \cdots$ operation and $a \cdots V3 \cdots$ operation when the resultant is an $\cdots V4 \cdots$ tensor.

Product of two proper orthogonal tensors is $a(an) \cdots V5 \cdots$ tensor, representing only one $\cdots V6 \cdots$ operation.

Hint: Given the orthogonality of \mathbf{Q}_1 and \mathbf{Q}_2 investigate if $\mathbf{Q}_1\mathbf{Q}_2$ has any special tensor property.

(b) Consider the following two rotations,

$$\mathbf{Q}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{1}) & -\sin(\theta_{1}) \\ 0 & \sin(\theta_{1}) & \cos(\theta_{1}) \end{bmatrix}, \qquad \mathbf{Q}_{2} = \begin{bmatrix} \cos(\theta_{2}) & 0 & -\sin(\theta_{2}) \\ 0 & 1 & 0 \\ \sin(\theta_{2}) & 0 & \cos(\theta_{2}) \end{bmatrix}$$
(6)

for $\theta_1 = \frac{\pi}{6}$ and $\theta_2 = \frac{\pi}{3}$. By running the matlab code http://rezaabedi.com/teaching/continuum-mechanics/HW3.m answer the following questions:

- i. What are the axis and angle of rotation for $\mathbf{Q}_1\mathbf{Q}_2$?
- ii. What are the axis and angle of rotation for $\mathbf{Q}_2\mathbf{Q}_1$?
- iii. Are the answers the same for $\mathbf{Q}_1\mathbf{Q}_2$ and $\mathbf{Q}_1\mathbf{Q}_2$? ¹.
- iv. Once you identify axis and angle of rotation for $\mathbf{Q}_2\mathbf{Q}_1$, reconstruct it using (4) and verify that the reconstruction based on its angle and axis matches the original $\mathbf{Q}_2\mathbf{Q}_1$.
- v. Can you think of rotations that are commutative?

Hint: Think about (1) for two θ_1 and θ_2 .

¹FYI: Using the traces of $\mathbf{Q}_1\mathbf{Q}_2$ and $\mathbf{Q}_2\mathbf{Q}_1$ what can we say about the angles of rotation for these two tensors? No need to submit this answer

6. Coordinate transformation of a rotation tensor(20 Points): One should be careful in distinguish between an orthogonal tensor and coordinate transformation. For example, let us consider $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$, specified by rotation of angle ϕ with respect to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, along \mathbf{e}_3 axis as shown in fig. 3. The coordinate transformation **MATRIX** is given by,

$$\mathbf{Q}_{\mathrm{tr}} = \begin{bmatrix} \mathbf{e}_{1}' \\ \mathbf{e}_{2}' \\ \mathbf{e}_{3}' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (7)

Express **Q** with respect to $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ coordinate system, whose components with respect to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ coordinate system are given in (1).

7. Exact and small-angle rotation tensors (50 Points): Consider the equation (1), where the rotation angle θ is time-dependent and is specified by a constant angular speed ω : $\theta = \omega t$. Thus, \mathbf{Q} is represented as a function of time $\mathbf{Q}(t)$. A vector with position \mathbf{u} at initial time is rotated with \mathbf{Q} and takes position $\mathbf{u}(t) = \mathbf{Q}(t)u(0)$ for all times. We want to compare exact rotation and and small angle rotation changes between t and $t + \Delta t$ for the vector \mathbf{u} :

$$\Delta u(t, \Delta t) = \mathbf{u}(t + \Delta t) - \mathbf{u}(t) = \{\mathbf{Q}(t + \Delta t) - \mathbf{Q}(t)\}\mathbf{u}(0)$$
 Exact rotation change (8a)

$$\delta u(t, \Delta t) = \left(\Delta t \dot{\mathbf{Q}}(t)\right) \mathbf{u}(0)$$
 Small-angle rotation (8b)

Equation (8b) is obtained from (8a) by Taylor expansion of $\mathbf{Q}(t + \Delta t)$ around t and ignoring second order and higher terms (basically using derivative approximation). For both equations consider t = 0 and Δt is a small angle (as needed for (8b)). Thus, we simply use $\Delta u(\Delta t)$ and $\delta u(\Delta t)$ and rewrite rotation change relative to initial position,

$$\Delta u(\Delta t) = \mathbf{u}(\Delta t) - \mathbf{u}(0) = {\mathbf{Q}(t) - \mathbf{Q}(0)} \mathbf{u}(0)$$
 Exact rotation change (9a)

$$\delta u(\Delta t) = \left(\Delta t \dot{\mathbf{Q}}(0)\right) \mathbf{u}(0)$$
 Small-angle rotation (9b)

(a) Show that $\dot{\mathbf{Q}}(0)$ is skew-symmetric.

Hint: Take derivative of $\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$, then plug t = 0 and note that $\mathbf{Q}(0) = \mathbf{I}$.

- (b) Express the tensorial notation of small angle rotation $\mathbf{W} := (\Delta t \dot{\mathbf{Q}}(0))$ for $\theta = \omega t$ from (9b).
- (c) Obtain the same small angle rotation tensor by Taylor expansion of $\sin(\theta)$ and $\cos(\theta)$ in $\{\mathbf{Q}(t) \mathbf{Q}(0)\}$ from (9a) and verify that it matches the previous result.
- (d) Express axial vector $\mathbf{w} = \mathrm{ax}(\mathbf{W})$. What is the direction of \mathbf{w} ? How is this direction related to the axis of \mathbf{Q} ? What is its magnitude?

Hint: Compare $ax(\mathbf{W})$ and $ax(\mathbf{Q})$ with equation (5).

(e) In a schematic, draw the change of exact rotation **Q** and small-angle rotation **W** for a vector that has components both parallel to the axis of rotation and also perpendicular to it. Briefly (less than 3 sentences) discuss how these values are different.