The balance of energy for purely thermal response is,

$$
\begin{equation*}
C \dot{T}+\nabla \cdot \mathbf{q}=Q \tag{1}
\end{equation*}
$$

in which $C=\rho c_{p}$ is the volumetric heat capacity where ρ is the mass density and c_{p} is is the specific heat capacity, T is temperature, \mathbf{q} is heat flux vector, and Q is volumetric heat source. The MaxwellCattaneoVernotte (MCV) modification to heat flux equation is

$$
\begin{equation*}
\tau \dot{\mathbf{q}}+\mathbf{q}=-\boldsymbol{\kappa} \nabla T \tag{2}
\end{equation*}
$$

where the relaxation time τ is added to Fourier heat flux equation $\mathbf{q}=-\boldsymbol{\kappa} \nabla T$ with $\boldsymbol{\kappa}$ being thermal conductivity matrix.

1. (200 Points) Conservation law representation of hyperbolic heat equation:
(a) Show that (1) and (2) yield the second order PDE,

$$
\begin{equation*}
\tau C \ddot{T}+C \dot{T}-\nabla \cdot(\boldsymbol{\kappa} \nabla T)=Q+\tau \dot{Q} \tag{3}
\end{equation*}
$$

(b) To evaluate whether the equation is hyperbolic or not, we need to examine the possibility of wave motion in arbitrary direction \mathbf{n} in space in the form $T=\bar{T}(\mathbf{n} \cdot \mathbf{x}-c t)$ with c being the wave speed. To simplify, we simplify the problem to 1 D and use homogeneous material properties. This 1D hyperbolicity analysis carries to 2D and 3D if the material is isotropic (i.e., $\boldsymbol{\kappa}$ is diagonal $\boldsymbol{\kappa}=k \mathbf{1}$). The 1D equation for homogeneous material is,

$$
\begin{equation*}
\tau C \ddot{T}+C \dot{T}-k \Delta T=Q+\tau \dot{Q} \tag{4}
\end{equation*}
$$

Show that (4) equation is hyperbolic.
(c) Show that the equations (1) and (2) can be written in the form of system of conservation laws,

$$
\dot{\mathbf{U}}+\mathbf{A U}_{, x}=\mathbf{S}, \quad \mathbf{U}=\left[\begin{array}{c}
C T \tag{5}\\
\tau q
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cc}
0 & \frac{1}{\tau} \\
\frac{k}{C} & 0
\end{array}\right], \quad \mathbf{S}=\left[\begin{array}{c}
Q \\
-q
\end{array}\right]
$$

Note that q is expressed as a scalar in 1D.
(d) What are the conditions for the hyperbolicity of (5), in terms of the flux matrix A. Show that (5) is in fact hyperbolic.
2. ($\mathbf{3 0 0}$ Points) SDG solution for the thermal problem: In the class we solved patch p_{1} for the following initial boundary value problem:

Domain	
Material properties:	$[03] \times \mathbb{R}$
Initial Conditions:	$C=1, k=1, \tau=1, \quad \Rightarrow \quad c=1$
	$T_{0}(x, 0)=0, q_{0}(x, 0)=0$

Boundary Conditions: $\quad \bar{T}(0, t)=0$ (Dirichlet BC), $\bar{q}(3, t)=1$ (Neumann BC)

Using the solution we obtained for element e_{1} in patch p_{1},

$$
\begin{align*}
T^{1}(\underline{x}, \underline{t}) & =-3.27 \underline{t} \tag{6a}\\
q^{1}(\underline{x}, \underline{t}) & =-6+3.27 \underline{x}+15.27 \underline{t} \tag{6b}\\
\underline{x} & =x-2, \underline{t}=t \quad \text { local Cartesian coordinate for element } e_{1} \tag{6c}
\end{align*}
$$

answer the following questions:

Figure 1: Schematic of SDG mesh, and initial and boundary conditions.

Table 1: Vertex coordinates for the mesh shown in figure 1

Vertex	Coordinate
A	$(0,0)$
B	$(1,0)$
C	$(2,0)$
D	$(3,0)$
E	$(0,1)$
F	$(1,1)$
G	$(2,1)$
H	$(3,1)$
I	$(1.5,0.5)$
J	$(2.5,0.5)$

(a) Can the patch p_{2} be solved in parallel to patch p_{1} ? What is patch the solution for p_{2} ?
(b) What patches must be solved before patch p_{3} can be solved? What is the solution for p_{3} ? What are T^{*} and q^{*} for the the facet of e_{4} on the spatial boundary of the domain (Γ) ?
(c) What polynomial order is used for the solution of the element(s) in patch p_{1} ?
(d) Patch p_{4} is comprised of elements e_{5} and e_{6}. In terms of $h p$ (h element size, p polynomial order) of the element briefly (less than 2-4 sentences for each question) answer the following question.
i. Can the element e_{6} have a different polynomial order than e_{1} without using any transition elements? How is this different from continuous FEM (CFEM)?
ii. Can we use different polynomial orders for T and q interpolation in element e_{6} ?
iii. Can elements e_{5} and e_{6} have different polynomial order?
iv. Explain why the nonconforming geometry transition between elements e_{1} and e_{6} and between elements e_{2} and e_{5} can be easily handles in SDG method. Explain how nonconforming h transition in SDG method is different from CFEM method.
(e) Why elements e_{5} and e_{6} should be solved simultaneously?
(f) For the solution of p_{4} use 1st order polynomial interpolation for temperature field T of element e_{6} and constant interpolations for T of element e_{5} and q field of both elements:

$$
\begin{align*}
T^{5}(\underline{x}, \underline{t}) & =a_{1}+a_{2} \underline{x}+a_{3} \underline{t} \tag{7a}\\
q^{5}(\underline{x}, \underline{t}) & =a_{4} \tag{7b}\\
T^{6}(\underline{x}, \underline{t}) & =a_{5} \tag{7c}\\
q^{6}(\underline{x}, \underline{t}) & =a_{6} \tag{7d}
\end{align*}
$$

where $(\underline{x}, \underline{t})$ are the same local coordinate used for the solution of element e_{1} :

$$
\begin{equation*}
\underline{x}=x-2, \underline{t}=t \tag{8}
\end{equation*}
$$

Use average flux for the target values on vertical facet γ

$$
\begin{align*}
T^{*}(\underline{x}, \underline{t}) & =\frac{1}{2}\left(T^{5}(\underline{x}, \underline{t})+T^{6}(\underline{x}, \underline{t})\right) \tag{9a}\\
q^{*}(\underline{x}, \underline{t}) & =\frac{1}{2}\left(q^{5}(\underline{x}, \underline{t})+T^{6}(\underline{x}, \underline{t})\right) \tag{9b}
\end{align*}
$$

and solve for the unknowns a_{1} to a_{6}.

