Weighted residual statement from the last time
Deriving matrices for linear elements Interior contributions:

$$
\begin{aligned}
m^{e} & \left.=\int_{e} U^{i} C \cdot \underset{d x}{d v} 1\right) \\
& =\int\left(\int_{x}^{1}(c[1 \quad x](h d x)\right. \\
m^{e} & =c h\left(\begin{array}{ll}
1 & 1 / 2 \\
1 / 2 & 1 \\
2
\end{array}\right)
\end{aligned}
$$

1D, pal element

$$
\begin{aligned}
& \rightarrow x=\frac{x-x_{0}}{h} \\
& U=\left[\begin{array}{ll}
1 & x
\end{array}\right] \\
& \nabla U=\frac{d U}{d X}=\left[\begin{array}{ll}
0 & \frac{1}{h}
\end{array}\right]
\end{aligned}
$$

(2 s)

$$
\begin{array}{r}
k_{b}^{e}=\int \nabla \nabla^{T} k \sqrt{x} d x=\int_{0}^{1}\left[\begin{array}{l}
0 \\
\frac{1}{h}
\end{array}\right] x\left[\begin{array}{ll}
0 & 1 \\
h
\end{array}\right)(h d x) \\
=\frac{k}{h}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

Farce term from internal:

$$
\begin{aligned}
& \int_{\partial e} U\left(-\sigma^{X} \cdot n\right) d \rho+\lambda \int_{\partial e} b \cdot n(-V-V) d s \\
& V^{p}=? \\
& \delta^{8}=?
\end{aligned}
$$

Chair are:

$$
\text { Average flux }\left\{\begin{array}{l}
V_{A}^{*}=\frac{V^{-}+V^{+}}{2} \\
\sigma_{A}^{*}=\frac{\sigma^{-}+\sigma^{+}}{2}
\end{array}\right.
$$

Riemann Solviai
we solve this simple IVPito obkin
Riemann solution on veollial
-side on characteristic lines, charactenstic t_{n+1} valves are constant (Source form $=0$) or we solve a simple ODE

say we compare * values here

What are the characteristics for this simple PDE

for source terms $=0$

waved coefficient al io

$$
\left\{\begin{array}{l}
b^{-}-z^{-} v=b^{\infty}-z^{-} v^{*} \text { eqna } \\
\underbrace{+}_{1}+z^{+} v^{+}=b^{\infty}+z^{+} v^{p} \text { eqn } b
\end{array}\right.
$$

2equs, 2culenowns:

We solve this to obtain:

General expressian

Arerage $\int \sum_{\sigma}=\frac{1}{2} \quad \sum_{\sigma^{+}}=\frac{1}{2} \quad \sum_{i}=0 \quad \sum_{r^{4}=0}$
fux $V_{6}^{-}=0 \quad V_{6}=0 \quad V_{V}=\frac{1}{2} \quad V_{V_{2}} \frac{1}{2}$

For nonliver PPEES (that is in general)

$$
F^{A}=f(F, F t)
$$

Case A: Interior of the domain contribution

$$
\begin{aligned}
& +\int_{\Gamma e^{-} e^{t}} \hat{U}^{+}\left(-\sigma^{\nabla} \cdot n^{+}\right) d s+\lambda^{+} \int_{\Gamma_{e^{\prime}} e^{+}}^{n+} \hat{\sigma}^{+} \cdot n^{+}\left(-V^{\phi}+V^{+}\right) d s
\end{aligned}
$$

Band dry integrals

contrabdvifrom interior
the leftside interfaces
expression of (4) for $1 D$ \& $p=1$ elements

Before evaluating these terms, lets compute field values at the interface

> Interface dols

$$
\begin{aligned}
& \bar{u}^{\prime}=\left[\begin{array}{ll}
1 & x^{-}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
\vec{a}_{2}
\end{array}\right] \\
& \overrightarrow{u^{-}}=\overline{u_{x}}=\left[\begin{array}{ll}
0 & \frac{1}{h^{-}}
\end{array}\right)\binom{a_{1}^{-}}{a_{2}^{-}} \\
& \sigma^{-}=R^{-} \nabla u^{-}=\left[\begin{array}{ll}
0 & \frac{k^{-}}{h^{-}}
\end{array}\right]\left[\begin{array}{l}
a_{1}^{-} \\
a_{2}^{-}
\end{array}\right] \\
& V^{-}=u^{0}=\frac{d}{d x}\left(\left[\begin{array}{ll}
1 & \vec{x}
\end{array}\right)\left[\begin{array}{c}
a_{1}^{-} \\
a_{2}^{-}
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & a^{-}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{-} \\
a_{2}^{-}
\end{array}\right] \\
& \text {local elewnent numbricy } \quad n=v \\
& U^{-}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] a \quad U^{+}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] a \\
& \sigma^{-}=\frac{k^{-}}{h^{-}}\left[\begin{array}{ll}
0 & 1
\end{array}\right] a \quad \sigma^{+}=\frac{k^{+}}{h^{+}}\left[\begin{array}{ll}
0 & 1
\end{array}\right) a \\
& V=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \dot{a} \quad v^{+}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \dot{a}^{\dot{a}} \\
& \text { What terms are needed for the interface terms: }
\end{aligned}
$$

From equation 5, we need

$$
\begin{aligned}
& {\left[\left[\tilde{n} \|, V, V^{+}, \sigma, \sigma^{+}\right.\right.} \\
& \lambda^{-} \hat{\sigma}^{-} \cdot n, \lambda^{+} \hat{\sigma}^{+} \cdot n^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{-} \hat{\sigma}^{-} \cdot n+\lambda t^{+} t^{+} \cdot n^{+}=\left[\begin{array}{lll}
0 & \frac{k^{-\lambda}}{h^{-}}
\end{array}\left|0 \quad-\frac{\lambda^{+} k^{+}}{h^{+}}\right|\right. \\
& \sigma^{-}=\left[\begin{array}{lll}
0 & \left.\frac{k^{\prime}}{h^{-}} \right\rvert\, 0 & 0
\end{array}\right] a \quad b^{+}=\left[\begin{array}{ll|ll}
0 & 0 & 0 & \frac{k^{+}}{h^{+}}
\end{array} a\right.
\end{aligned}
$$

Terms from intoner interface in $1 D, p_{z} 1$

$$
\begin{aligned}
& \widetilde{T}_{u}=-\left[\int_{j} \hat{U} \| \delta^{\phi}=\right. \\
& -\left[\begin{array}{c}
1^{l} \\
\frac{1}{-1} \\
0
\end{array}\right)\left(\sum_{\sigma^{\prime}} b^{-}+\sum_{\sigma^{t}} b^{\dagger}+\sum_{V} v_{+} \sum_{v^{+}} v^{\dagger}\right)
\end{aligned}
$$

Other term

$$
\begin{aligned}
& \tilde{F}_{g}=\lambda \hat{\sigma}^{-} \cdot n^{-}\left(-v^{p}+V^{-}\right)+\lambda^{+} \sigma^{\top} \cdot n^{+}\left(-v^{p}+v^{\dagger}\right) \\
& V^{*}=V_{\sigma}^{\sigma}+V_{\sigma} \sigma^{+}+V_{V} V_{+}^{-} V_{V} V^{+}
\end{aligned}
$$

