
with blakediagonal mas matrix

can be V valve at t_{n}
or some more advanced projection if previous solviai

We can also do the same process for a parabolic PDE'

we'll focus on hyperbolic PDE'S with the use of causal meshes

$$
\begin{array}{r}
t \\
\tilde{T}=0
\end{array}
$$

we are going to solve parch 1 (containing q) today:

MEV, 2 field, each $p=1$

$$
\begin{align*}
& T=a_{1}+a_{2} x+a_{3} t \\
& q=a_{4}+a_{5} x+a_{6} t \tag{1}
\end{align*}
$$

Matonal properdics

$$
C_{i} 1, k=1, \tau=1
$$

$\rightarrow c=\sqrt{\frac{\alpha}{c \tau}}=1$
FRS:

$$
\begin{aligned}
& \left.\int_{e} T^{r}(C \dot{T}+\nabla \cdot q-Q) d v+\int_{d e} \tilde{T}(C \dot{B}-C T) n_{t}+\left[\left(q^{Q}-q\right) n^{n}\right]\right) d s \\
& +\int_{e} \tilde{q}(r \dot{q}+k \nabla T+q) d v+\int_{j e}\left[\hat{q}\left(r q^{p}-\tau q\right) n t+\left(k T^{*}-k T\right) n\right) d s=0
\end{aligned}
$$

plogging

$$
\begin{aligned}
& \Gamma=a_{1}+a_{2} x+a_{3} t \\
& 9=a_{4}+a_{5} x+a_{6} t
\end{aligned} \quad C, k, \tau=1
$$

$$
\begin{aligned}
& \text { we do the banndary integrals first }
\end{aligned}
$$

\Rightarrow contributious from the boandanes are

$$
\begin{equation*}
\int_{e_{e}}(\hat{T} T+\hat{q} q) d x+\int_{j_{e b}}^{n}(1-q) d t \tag{2a}
\end{equation*}
$$

we need to add intenior contabains $\quad(Q: O)$

$$
\begin{aligned}
& \text { (1) } \rightarrow \\
& \rightarrow \quad \int_{e} \hat{T}(\dot{T}+\nabla \cdot q) d v+\int \hat{q}(\dot{q}+T, x+q) d v \\
& T=a_{1}+a_{2} x+a_{3} t \rightarrow \begin{array}{l}
\dot{T}=a_{3} \\
T_{1} x=c_{2}
\end{array} \\
& q=a_{4}+a_{5}^{x}+a_{6} t \rightarrow \quad q=a_{6}
\end{aligned}
$$

$$
\rightarrow\left|\int_{\text {e }}^{\int_{\text {interior terns }}^{T} \hat{T}\left(a_{3}+\frac{q_{j}}{q_{s}}\right)+\hat{q}\left(a_{6}+a_{2}+a_{4}+a_{5} x+a_{6} t\right) d v} 2 b\right|
$$

Add $2 a, 2 b$ to get

$$
\begin{aligned}
& \int_{e}^{1}\left\{r\left(a_{3}+a_{5}\right)+\hat{q}\left(a_{6}+a_{2}+a_{4}+a_{5} x+a_{6} t\right)\right\} d v \\
& +\int_{\partial e}\left[\frac{r}{T} \cdot\left(\tilde{a}_{1}+a_{2} x+a_{3} t\right)+\hat{q}\left(a_{4}+a_{5} x+a_{6} t\right)\right] d x \\
& \hat{T}=\left[\begin{array}{l}
1 \\
x \\
t \\
0 \\
0 \\
0
\end{array}\right] \quad \hat{q}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{x} \\
t
\end{array}\right]
\end{aligned}
$$

Useful formulas for integration of constant, linear, and second order functions inside a triangle and on the boundaries -> useful for the HW assignment

Natural coordinodes for simplicen

d: dimension
$\sum_{i=0}^{d} \alpha_{i}=1 \quad 1 \alpha$ is redundant
for a triangle

$$
\int_{\Sigma^{-}} \alpha_{0}^{p_{0}} \alpha_{1}{ }^{p_{1}} \alpha_{2} p_{2} d V=|A| \frac{2!p_{0}!p_{1}\left|p_{2}\right|}{\left(2+p_{0}+p_{1}+p_{2}\right)!}
$$

(5)

Since our elements are $p=1 \rightarrow$ integrands are order 2 (maximum)
we want to find closed-form formulas fer integratici of $0,1,2$ ardor fundions over a triangle
constant

$$
\int c d A=c|A|
$$

tangle $<-A$

$$
l_{1 \times 1} n-1 \quad n-1 \text { in }
$$

lineor $f(x)=a_{0} \alpha_{0}+a_{1} \alpha_{1}+a_{2} \alpha_{2}$

$$
f\left(Q v_{i}\right)=a_{i} \quad\left(@ v_{i} \alpha_{i}=1, \alpha_{\substack{j \\ j \neq i}}=0\right.
$$

$$
\begin{aligned}
& \int f(x) d v=\int_{A}\left(a_{0} \alpha_{0}+a_{1} \alpha_{1}+a_{2} \alpha_{2}\right) d A=a_{0} \int_{A} \alpha_{0} d A+a_{1} \mid \alpha_{1} d A \\
& \int \alpha_{0} d A=\sum_{n}^{p_{1}} p_{1}^{p_{2}} \Gamma_{2} \alpha_{2} d A \\
& \alpha_{0} \alpha_{1} \alpha_{2} d A=|A|^{2!P_{0}!p_{1}!p_{2}!} \frac{2!!!}{\left(2+P_{0}+P_{1}+P_{2}\right)!}=\frac{2!}{3!}|A|
\end{aligned}
$$

\Rightarrow Same wish $\int \alpha_{1} d n=\int \alpha_{2} d A_{i} \frac{(A)}{3}=\frac{|A|}{3}$

$$
\int_{A} a_{0} \alpha_{0}+a_{1} \alpha_{1}+\alpha_{2} \alpha_{3}=\left(\frac{0_{0}+a_{1}+a_{2}}{3}\right)|A|
$$

liveor x linoor lindiai

$$
\int f_{a}(\alpha) f_{b}(\alpha) d A=\left(\left(a_{0} \alpha_{0}+a_{1} \alpha_{1}+a_{0} \alpha_{v}\right) / b_{n} \alpha_{0}+h_{N}+h_{N}\right) d_{n}
$$

$$
\begin{aligned}
& \int_{A} f_{a}(\alpha) f_{b}(\alpha) d A=\int_{A}^{1}\left(a_{0} \alpha_{0}+a_{1} \alpha_{1}+a_{2} \alpha_{2}\right)\left(b_{0} \alpha_{0}+b_{1} \alpha_{1}+b_{2} \alpha_{2}\right) d A \\
& \begin{array}{r}
=\int_{A}\left[a_{0} b_{0} \alpha_{0}^{2}+a_{1} b_{1} \alpha_{1}^{2}+a_{2} b_{2} \alpha_{2}^{2}\right]+ \\
+\left(a_{0} a_{0} b_{1}+a_{1} b_{0}\right) \alpha_{0} \alpha_{1} \\
+\left(b_{2}+a_{2} b_{0}\right) \alpha_{0} \alpha_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \int \alpha_{0} \alpha_{1} d A=\int \alpha_{0}^{1} \alpha_{1} \alpha_{2}=\frac{2!1!!!}{p_{1} p_{1} p_{2}} \begin{array}{c}
(2+1+1+0)!
\end{array}=\frac{1}{12} \\
& \begin{array}{r}
\rightarrow \quad \int_{A} f_{a}(\alpha) f_{b}(\alpha) d k\left[\frac{1}{6}\left(a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}\right)+\frac{1}{12}\left(a_{0} b_{1}+a_{1} b_{0}\right.\right. \\
\left.+a_{1} b_{2}+a_{2} b\right)
\end{array} \\
& \left.+a_{2} b_{0}+a_{0} b\right) \int A \mid \\
& \int_{1 s t}^{\text {didr }} \int_{A} f_{q}(\alpha) d A=\left(\frac{a_{0}+a_{1}+a_{2}}{3}\right)|A| \\
& \text { ork } d d d \int_{A} c d A=c|A| \\
& \text { for trangle (6a) } \\
& \text { h } 1
\end{aligned}
$$

ID (line) version of this

2ndader $\int f_{a} f_{b} d s^{\prime}=\left(\frac{a_{0} b_{0}+a_{1} b_{1}}{3}+\frac{a_{0} b_{1}+a_{1} b_{0}}{6}\right) L$
1st odder $\quad \int f_{a} d s=\left(\frac{a_{0}+a_{1}}{2}\right) L$
oth order $\quad \int c d s=c l$

Equation (*) copied:

$$
\begin{aligned}
& \int_{e}\left\{r\left(a_{3}+a_{5}\right)+\hat{q}\left(a_{6}+a_{2}+a_{4}+a_{5} x+a_{6} t\right)\right\} d v \\
& +\int_{\partial e}^{e}[T \cdot\left(\widetilde{a}_{a_{1}+{ }_{2} x+a_{3} t}^{T}\right)+\hat{q}(\overbrace{a_{4}+a_{5} x+a_{6} t}^{q})] d x \\
& \int_{\text {deb }}^{\partial e_{i}} \hat{q}\left(1-\left(a_{4}+a_{5} x+a_{6} t\right)\right) d t=0 \\
& \hat{T}=\left(\begin{array}{l}
1 \\
x \\
t \\
0 \\
0 \\
0
\end{array}\right] \quad \hat{q}=\left[\left.\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
x \\
t
\end{array} \right\rvert\,\right. \\
& 6 \text { eqns \& } 6 \text { inknouns }
\end{aligned}
$$

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
1 \\
x \\
t
\end{array}\right)
$$

2nd order ones

$$
\begin{aligned}
\int x \cdot x d v \quad & \int x \cdot t d v \\
& \int t \cdot t d v
\end{aligned}
$$

才st ador

$$
\int x d r \quad \int t \cdot d v
$$

$$
\int x \cdot x d v=?
$$

$$
\begin{aligned}
& \int_{A} x \cdot x d A=|A|\left(\frac{|x|+|x|}{6}+\frac{|x|+|x|}{12}\right)=\frac{A}{2} \\
& \int x \cdot+d A=|A|\left(\frac{|x|}{6}+\frac{|x|}{12}\right)=\frac{A}{4}
\end{aligned}
$$

DG Page 10

