From last time we derived T, R coefficients for stress

What if we compute these coefficients in terms qi velocity.

To calculate transmission reflection coefficients we do the following:

1. Everything on the RHS (+ side) is zero.
2. The solution on the LHS (- side) corresponds to a right-going wave.

$$
\begin{aligned}
& 6^{-}+Z^{-}=0+Z_{0}^{-} \\
& \sigma^{-}=-Z v^{-}
\end{aligned}
$$

(a) $V^{\top}=0, b^{\top}=0$
(b) Righl-going wave
(a)

$$
\begin{aligned}
& V=\frac{v^{-} z^{-}}{z^{-}+z^{+}}+\frac{-\left(-z^{-}-\right)}{z^{-}+z^{+}} \\
& \breve{v}=\frac{2 Z^{\prime}}{z^{-}+z^{+}} \rightarrow \text { (2) } \left\lvert\, \begin{array}{l}
T_{1 \rightarrow 2}^{V}=\frac{2 z^{-}}{z^{-}+z^{+}} \\
T_{1 \rightarrow 2}^{6}=\frac{2 z^{+}}{z^{-}+z^{+}}
\end{array}\right. \\
& Y=\frac{1}{Z} \\
& T_{12}^{v}=\frac{2\left(\frac{1}{Y^{-}}\right)}{\frac{1}{Y^{\top}}+\frac{1}{Y^{\top}}}=\frac{2 Y^{+}}{Y^{\prime}+Y^{+}} \underbrace{\text { look }}_{\substack{\text { the } \\
\text { sand }}}
\end{aligned}
$$

$$
\begin{aligned}
& Z: \operatorname{mpentan} \theta \quad Y \text { I. transmittance } \\
& O=Z V O
\end{aligned}
$$

1. What happens when $Z-=Z+$?

$$
(C \rho)^{-}=(\varphi)^{t}
$$

$$
R^{\prime} s=0 \quad T z L
$$

The wave is not reflected at all and all of it is transmitted to the other material.

E, IN eledic
\& magnetic fells
D,B elea \& magnetic fluxed

The uses of these coefficients:

1. We can come up with transmission and reflection coefficients for more complex (1D) materials and characterize their effective properties (e.g. metamaterials).

2. Transmitting boundary condition

For 1D (exact in 1D, not exact in 2D/3D) transmitting BC we do the following

$$
\left.\begin{gathered}
\begin{array}{c}
6=0 \\
v^{+}=0
\end{array} \\
=O
\end{gathered} \right\rvert\, x
$$

Silver-Muller Boundary condition (It's a 1D Riemann solution)

No exact in as $23 D$
\otimes

This is decent but can give you wrong results in 2D / 3D.

Perfectly Matched Layer (a layer around the material with the same impedance)

Riemann solutions for 2D,3D problems.

$$
f_{t, t}+\nabla \cdot f_{x}=\rho
$$

$$
P \quad \int p|\varphi| \rho 1
$$

$$
\begin{aligned}
& \text { rot } T v a \cdot x-j \\
& f_{t, t}+f_{1,1}+f_{2,2}=\left[f_{1,3}|f| f\left|f_{3}\right| f\right.
\end{aligned}
$$

for a linear problem

$$
\left.\begin{array}{l}
f_{t}=q \\
f_{1}=A_{1} q \\
f_{2}=A_{2} q \\
f_{3}=A_{3} q
\end{array}\right\} \rightarrow
$$

(3) $\begin{aligned} & 0 \\ & q+A_{1} q_{11}+A_{2} q_{2}+A_{3} q_{33}=\rho\end{aligned}$

3D liver conservadi: law strong form

$$
20 x+1 \mathrm{me}
$$

stare
\qquad

The least accurate is if we assume ONLY 1 state on each side. We'll solve that problem the next time.

