
2018/04/13
Friday, April 13, 2018 11:38 AM

 DG Page 1

So, in
Zhan_2018_An exact Riemann solver for wave
propagation in arbitrary anisotropic elastic media with
fluid coupling.pdf
The process of solving eigenvalue problem for these anti-
symmetric matrices is discussed ->

9x9 A matrix we end up solving a 3x3 matrix eigenvalue
problem

 DG Page 2

 DG Page 3

Implementation:

 DG Page 4

Classes needed for a finite element implementation

Cell1.
Is a geometry object in 0D, 1D, 2D, 3D, … that
provides certain functionalities (discussed later)

Eventually element interiors, faces, etc. all will be built
from geometry cells.

It's comprised of a list of vertices.-

Functionalities of a geometry cell:

 DG Page 5

It's comprised of a list of vertices.-

Functionalities of a geometry cell:

The list of facets, facets of facets, etc. recursively is called
the set of faces of a cell

 DG Page 6

One of the functionalities we want is knowing facets,
cofacets, faces, and cofaces of a cell

-

We want to know the vertices of a cell-

Geometry cell in the code:

GMeshing\GCell.h

class Gcell
List of vertices
void getVertices(vector<GVertexH>& verticesOut) const;

map<GCellID, GCellFacet> facets;
// vector<GCellID> extrusionFaces; // bottom, ..., top extrusion cells if any

vector< map<GRefinementLevel, GCellCofacet> > cofacets;
vector<GVertexH> vertices;

Facets, cofacets, and vertices of a cell

The Cell (Gcell) class is general. For any new element
type, we need to derive a subclass for it

GMeshing\GCellSimplex.h

class GCellSimplex : public GCell

For each derived geometry cell type all we need to do is to implement a few virtual functions:

GCellSimplex(int geomCellOrderIn = 1, GCellID idIn = -1);

 DG Page 7

GCellSimplex(int geomCellOrderIn = 1, GCellID idIn = -1);
// other functions used in initialization
// the order of facets is important. It helps set the orver of vertices
virtual void setFacetsReadingMesh(vector<GCellID>& facetIDs, GCellH mesh);

virtual void TransferBaseFacetQuadCoord_2_BaseCofacetOrNbrQuadCoord(GCellH facetBase, const
GQuadCoord& facetQuadCrd, GQuadCoord& cofacetOrNbrQuadCrd);
virtual void ComputeX_dXdAlpha_BaseCell(GCellH actualCell_no_b2t, GQuadCoord& quadCrd,
vector<double>& X, GCellGeomProp& geomPropOut, bool compute_dX_dAlpha, bool computeX);
virtual void Compute_sdxFacet_from_sdxMatrix_in_Cofacet(GCellH facetBase, GCellGeomProp&
geomPropOut);

Other things needed from a Gcell:

3. Neighborhood:
Can be shown by having (facets, cofacet, and
containment (co-containment) information you can get
any type of neightborhood information needed.

a. Quadrature rule: giving the list of quadrature
points, weights, for an integration order; Jacobians
for face and interior integral.

b. Normal vectors and volume.
c. Bunch of coordinate transformation.

4. Geometry operations such as:

We have at least 3 different types of coordinate:

 DG Page 8

 DG Page 9

Geometry needs to be able to do all coordinate
transformations between A, X, x

 DG Page 10

 DG Page 11

 DG Page 12

