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Weighted residual copied for the element on the right boundary
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Inflow face integral:
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Finally, we have the boundary integral
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Because of the refinement both spatial and temporal size of the element decrease.

Comparison with a time marching scheme ‘{K?\ \ ;/\f\ L
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Advantages of cSDG method:
Achieving high temporal orders in semi-discrete methods (CFEMs and ‘ Achieving high temporal order
DGs) is very challenging as the solution is only given at discrete times. in time marching meth"hdsdis d‘fﬁcu!lt
» Perhaps the most successful method for achieving high order of accuracy - ::m:s:ﬁ;?;dm;tofa:;:;T::
in semi-discrete methods is the Taylor series of solution in time and time
subsequent use of Cauchy-Kovalewski or Lax-Wendroff procedure (FEM
space derivatives = Ttimme genvatves). However, this method becomes 5 /\ ’
increasingly challenging particularly for nonlinear problems. < PCKQM
* High temporal order adversely affect stable time step size for explicit DG - =
methods (e.d. ﬁ r worse for RKDG and ADER-DG methods). \
] K
» Spacetime (CFE\I'\Tand DG) methods, on the other hand can achieve %, TY
t arbitrarily high temporal order of accuracy as the solution in time is 741 X 2
directly discretized by FEM. " H f
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For a 5th order method in time, the maximum time advance is reduced by about an order of magnitude.
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In cSDG method, since the only constraint is keeping the outflow facets causal, the order of element has no effect on the
maximum time advance of a vertex.

- Just because of this simple fact, for p = 5, the maximum step of cSDG method is about 10x of EXRK5!

1. Asynchronous / no global time step
Problem statement: Q\(j?\\(&ﬁv M@A
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® Implicit-Explicit (IMEX) methods increase the time step by geometry |
splitting (implicit method for small elements) or operator splittin

g.
¢ o T T pop = A smdheawved 5

cplicit implicid) explicit

At x
® Local time-stepping (LTS): subcycling for smaller elements enables

using larger global time steps 2
L Gregor Gassner, efc. A, Taube, M. Dumbser, C.D. Munz :?
and R. Schneider, A high-order t. B — — .
discontinuous Galerkin method with \ I3 XV\/\N&
T time accurate 7 < R
X local time stepping for the Maxwell R g \3,
\O \- equations, Int. J. Numer. Model. t P M \/\K K U 8
SUwc 1< M 2009: 22:77-103

NoEQ DG

With ¢SDG method

aSDG SDGFEM graciously and

® Small elements locally have smaller progress in it efficiently handles highly
time (no global time step constrains) multiscale domains

® None of the complicated “improvements” of time oy

DG Page 5



agwa SUsrEM graciously ana

® Small elements locally have smaller progress in it efficiently handles highly
time (no global time step constrains) multiscale domains
® None of the complicated “improvements” of time ﬂ*}*\f{
marching methods needed b X
—
Each element takes its own 100% efficient maximum time advance. k/\

2. Spacetime grids and Moving interfaces

» Problems with moving interfaces: |
* Solid-fluid interaction * Non-linear free surface water waves
* Helicopter rotors /forward fight * Flaps and slats on wings and piston engines
+ Derivation of a conservative scheme is very challenging:
» Even Arbitrary Lagrangian Eulerian (ALE) methods do not automatically
satisfy certain geometric conservation laws. Results by Scott Miller

t ot
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D >
Tracking moving boundaries in spacetime

+ Spacetime mesh adaptive operations \
Enable mesh smoothing and adaptive g {_A};
operations Without projection errors of e

semi-discrete methods. 4“

Edge contraction Edge flip  Inclined tent pole

T

Refinement, edge flip, coarsening and even mesh smoothing operations involve projections from an old mesh to a new mesh. U\j\
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3. Adaptive mesh operations

= Local-effect adaptivity: no need for reanalysis of the entire domain
t t
large error

A x [ RPA AN x

+ Arbitrary order and size in time: : :
ADER-DG with LTS .
@‘( &QA L

Example: |
LTS by : R O AN NS -
Dumbser T Ao
Munz, Toro, i
X Lorcher, et. al. ! ; ; O
[N T TR T T
R L, LS
g Y
h-refinement and p-enrichment can easily be done as with all the other DG methods (compared to CFEMs) (& Q/\/\N\/\k

- The main advantage is that we can arbitrary change the order in time per element!

RK 5
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With time marching schemes it is very difficult to have different temporal orders for different parts of the domain.
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» Adaptive operations in spacetime: Sod's shock tube problem
- Front-tracking better than shock capturmg Results by Scott Miller
/
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Shock capturing: 473K elements ) Shi racking: 446 elements SG\V\'—\. 0 S&(\‘Cf )\_\'

Same shock tracking schemes can be used to track crack faces in
spacetime

R KRR
74""4‘4\‘,14\ NGO > A0, 2D version of the same problem above

RS AL LRI ; sefvanonJiaws. Results by Scott Miller
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