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FiG. 3.1. Consistency and stabilily of some DG methods.
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How to make these schemes stable?

For these unstable methods, we can choose the penalty (alpha) large enough to make

them stable.
But the large penalty messes up with the condition number of the system matrix
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PERFORMANCE OF DISCONTINUOUS GALERKIN METHODS
FOR ELLIPTIC PDE’S

PAUL CASTILLO *

Abstract. In this paper, we compare the performance of the main discontinuous Galerkin (DG)
methods for elliptic partial differential equations on a model problem. Theoretical estimates of the
condition number of the stiffness matrix are given for DG methods whose bilinear form is symmetric,
which are shown to be sharp numerically. Then, the efficiency of the methods in the computation of
both the potential and its gradient is tested on unstructured triangular meshes.

TABLE 5.2
Asymptotic behavior of the spectral condition number k(h) as a function of the mesh size, when

using uniform approvimalions of degree p.

method penalization k() -
AN
Babugka-Zlamal O (h=+1) W—)\\’/—)} QV‘A %(WN\S \EM\/\,{‘A}\\\7
N\ A P PN .

DG Page 1




method |1|'||;|]i/:1li1|r|

Babugka-Zlimal O (h=0rt1)
1 O (h~")
LDG O(h™")
Baumann-Oden  no penalization
NIPGI1 O(h™")

NIPG3 O (h=?)

NS

WY

0 [r‘r_'l‘,l

O (h=7)
rJ [[Jr—."u

) [h_:f
~

From all the previous discussions, it appears that LDG method is the best option (optimal

N

convergence rate -> see below) and eta_0 just needs to be positive.

The downside is that it's a two field formulation, but as discussed last time by using lift
operators, r and | and using the fact that T* is only a function of T, we can condense q

out from the global system
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LDG fluxes: central versus alternating flux options
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DIFFERENT FORMULATIONS OF THE DISCONTINUOUS
GALERKIN METHOD FOR THE VISCOUS TERMS”

CHI-WANG SHUT

Abstract. Discontinnous Galerkin method is a finite element method using completely discon-
tinuous piecewise polvnomial space for the numerical solution and the test functions., Until recently
it was mainly used for solving convection problems involving only first spatial derivatives. Recently
the method has been extended successfully to solve convection diffusion problems involving second
derivative viscous terms. In this paper we will use simple examples to illustrate the basic ideas and
“pitfalls™ for using the discontinuous Galerkin method on the viscous terms.

4. The local discontinuous Galerkin method for the second order dif-
fusion problem. I[ we rewrite the heat equation (3.1) as a first order system
(4.1} wp — e =1, i uy =1,

[ ! 1 + i 1 +
(1.3) Uit =35 (HJ___. } ”_,__L) . Ujvt =5 (q_,__-; { q_f__l) .
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1. It spreads 1o five cells when a local basis is chosen for w in cell £;. After ¢ is un \
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P1 -> eliminated -> we have optimal convergence for any order of element.
P2 -> just one layer connectivity even with g condensation

Both problems can be cured by a clever choice of fluxes, proposed in Cockburn

and Shu [8]:
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{3.3), even though we now have nominally an additional auxiliary variable ¢! (NS

K1 for all k. ¢V
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Remaining for parabolic case:
- erroneous parabolic flux DG_course\Papers\Fluxes

\Elliptic+Parabolic\ErroneousParabolicFluxes
- A more physical way to get parabolic star values:
Lorcher_2008_An explicit discontinuous Galerkin
scheme with local time-stepping for general unsteady

diffusion equations

Hyperbolic PDEs
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Write (1) as a system of conservation laws:
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