From last time

- Unlike elliptic case, the alpha term is not needed for stability. We just need this for enforcing essential BC when $\zeta = 0$

similar but sure is no characteristics

- For any nonhorizontal facet, the star value really depends on the two sides values.
- For inflow (red) we can use this because the inflow solution is available and the time outflow side is being solved. -> We make the approximation to let the star equal to the earlier solution.
- For **outflow** (green) we cannot have a local solution process if the star value is similar to interior facets (i.e. depending on the two sides). We **make an approximation by letting the star equal to the interior trace**.

The parabolic case is stable if the time advance is limited by element size^2.

Similar background:

An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations

Frieder Lörcher*, Gregor Gassner, Claus-Dieter Munz

ADER DG is a very powerful method: Like cSDG it's

- Arbitrarily high order in space and time
- Asynchronous

But here are some concerns:

- For nonlinear PDEs (like fluids the extrapolation in time is very complicated)
- For both hyperbolic and parabolic PDEs the time step is drastically influenced by polynomial order. In SDG, the time advance is not influenced by polynomial order in hyperbolic case.

Table 2						
Stability	numbers	of	the	optimized	STE-DG	scheme

Ν	1	2	3	4	5	6	7
β_{\max}	1.46	0.8	0.54	0.355	0.28	0.21	0.16
β_{\min}	1.0	0.33	0.20	0.14	0.10	0.08	0.06

Global stability analysis of linear PDEs

To analyze the stability of the scheme, a periodic problem with a given spatial discretization is considered. As the problem (3.40) is linear, one can construct a matrix W such that

$$\hat{u}^{\text{new}} = W\hat{u}^{\text{old}},\tag{3.41}$$

where \hat{u}^{old} denote DOF at a common time level t^{old} and \hat{u}^{new} denote DOF at a common time level t^{new} with $t^{\text{new}} > t^{\text{old}}$. $W = W(\Delta t_i)$ depends on the time steps Δt_i of each element Q_i . Following the matrix method of stability analysis described in [14], the scheme is stable, if the spectral radius $\rho(W)$ is lower or equal to 1.

We first consider uniform grid spacing and uniform polynomial order, thus, $\Delta x = \text{const}$ and $\Delta t = \text{const}$ in the whole computational domain. For an explicit DG scheme discretizing equation (3.40), a stability restriction for the time step has the form

