Lorcher_2008_An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations.pdf

To analyze the stability of the scheme, a periodic problem with a given spatial discretization is considered. As the problem (3.40) is linear, one can construct a matrix W such that

$$\hat{u}^{\text{new}} = W \hat{u}^{\text{old}}, \qquad \qquad \bigcirc = \bigcirc = \bigcirc$$

where \hat{u}^{old} denote DOF at a common time level t^{old} and \hat{u}^{new} denote DOF at a common time level t^{new} with $t^{\text{new}} > t^{\text{old}}$. $W = W(\Delta t_i)$ depends on the time steps Δt_i of each element Q_i . Following the matrix method of stability analysis described in [14], the scheme is stable, if the spectral radius $\rho(W)$ is lower or equal to 1.

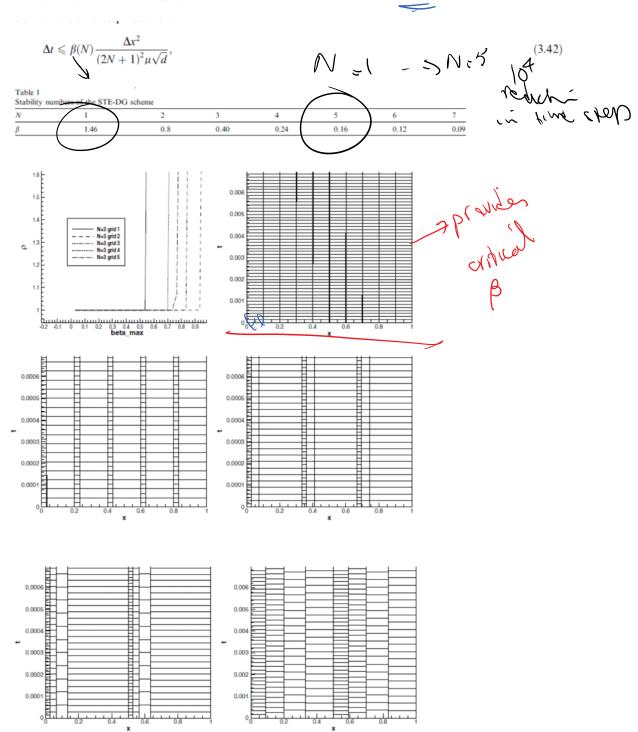
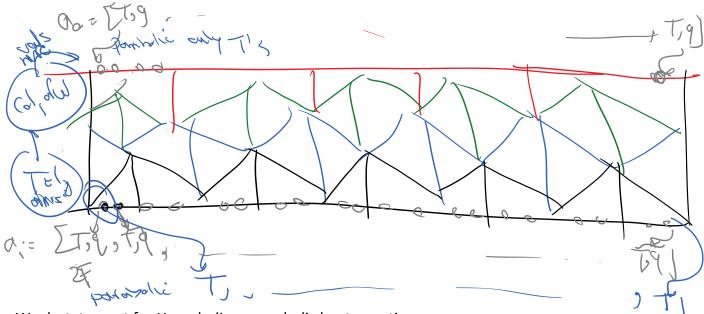



Fig. 3. $\rho(\textbf{\textit{W}})$ as function of β_{\max} for space-time grids 1-5, space-time grids 1-5.

Fig. 3. $\rho(\mathbf{W})$ as function of β_{\max} for space-time grids 1-5, space-time grids 1-5

The uniform mesh has the most restrictive beta

Han to get RMI

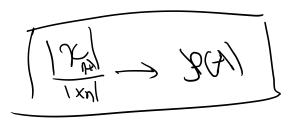
Weak statement for Hyperbolic or parabolic heat equation

$$\int_{e} \left(-\hat{T}_{,t}CT - \hat{T}_{,x}q - \hat{T}Q - \kappa^{-1}\tau\hat{q}_{,t}q - \hat{q}_{,x}T + \kappa^{-1}\eta\hat{q}q \right) \mathrm{d}V + \int_{e} \left(T\left[CT^*n_t\right] + \hat{q}\left[\kappa\right] + \hat{q}\left[\kappa\right] + \hat{q}\left[\kappa\right] + T^*n_x \right] \mathrm{d}S = 0$$

$$\text{parable We saw that } P \text{ and } k \text{ we say have initial } T \text{ and } k \text{ parable we say have initial } T \text{ and } k \text{ parable we say have initial } T \text{ and } k \text{ parable we say have initial } T \text{ parable we say have } T \text{ parable w$$

$$\int_{\partial e} \left(\hat{T} \left[C T^* n_t + \hat{q} \right] + \hat{q} \left[\kappa \right] n_t + T^* n_x \right) dS = 0$$

a Ma.


(Na: Ne: - Follown)

a: list pour

Waj= Wej = (allum); of the making

There are a lot of methods that don't need the explicit form of a matrix to do the certain matrix calculation (very useful in solving PDEs, because as you see above getting these matrices is extremely expensive)

Anob I don't ned Alto max (1/2il) of A = g(A)	Also give eigen valve
guai rued to be able to set	An)
a: sa easy! Ic final soldi	
P	2 /20
Mos Niel- Ani	$\chi_{i} = \Lambda \chi_{i}$
1 and or (NOS)	> 1×2/
~ V \	W.
112	

