2016/03/02

eeeeeeeeeeeeeeeeeeeeee

t| 4] - [qf] _

2 VM{M@Q chLS
,{(pt. bl jNL‘ M (ﬁt/b

Nove A ¢ RYWA4)

P o r

/\/\,M oww\»{g(\ Fc [(P(
!

?5';/“\&551@

\—-
Mool gty i T,
H-| J ¢LM({SL l ‘(E (”\(7397;(/»L

\/X - CPTM O{ (/g{m m \I{qr&fﬁr{ w> (/Syﬂ«m



>< @ /\1\} US{\( (\‘V\ \I{ qh&lm sv> V 375}0\,\

bl e fe M g g

X Ux- R e

X(1)+ 2TCoX() + 2*X(1) _qp‘mﬂ

X' =Xt=0) =@ " Mu" X"=X(t=0 ]=¢']'MI;I”
. C—

¢ ©

e There are three important ranges of & that we observe from this equation

1. @ <& w very slow varying load: D =2 1: That is, we are in quasi-static regime and ignoring inertia effects & {and damping
as we discuss later &) is reasonable. Basically, loading rate is so slow that with any increment of loading the system
has enough time to reach to a static equilibrium which is why we can ignore ¥ (and #). In fact, for quasi-static loading
regime, we can solve the solution by ignoring M (and C) in i and have KAU = AR between time steps.

2. w =2 w which is at or near resonance: We have the largest D). For an undamped oscillator ) — oo as w — w, i.e., when
the loading resonance occurs. Later, we show that I) remains hounded when damping 1s added. Still D) can get larger
than unity for © near the undamped resonance frequency.

z w very fast varying/oscillating load: In this case the load oscillates so fast that the SDOF system does not have

time to respond and hfmtfﬂ]'» dynamic respond would be close to zero. That is [ — 0 when w/w — oo,
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e To add the quasistatic contribution of loading through the higher modes (1 = p) that we did need include in the modal
analysis ((199)) we compute the error in the load vector. Since R = Z:ﬂ riMd; the error in R 1s,

»
AR=R — Z riMd; (200)
i=1

Modal analysis vs. Direct numerical integration of MU + CU + KU =R %

The choice between computing natural frequencies [ modes vs. direct temporal integration of MU+ CU+KU=R depends on
varions aspects.

e Need for natural frequencies / modes: In Many applications, regardless of the need to solve MU + CU + KU = R, we
need to obtain natural frequencies and modes which warrants a modal analysis.

e Load frequency band The frequency band of the loadings (BCs, ICs, body foree) to a large extend determine how many
modes (p) should be included in a modal analysis. We can define two classes of problems:

1. Structural dynamic problems: Only the first few terms are sufficient for an accurate solution with modal analysis. For
example, for earthquake loading in some cases only the 10 lowest modes need to be considered m If instead
of using modal analysis, we directly want to integrate MU+ CU4+KU=R in time, an implicit scheme is preferred
because from accuracy perspective large time steps can be taken without affecting the solution much. Thus, the very
small time step restriction of explicit methods can render them inefficient.

b2

. Wave propagation problems: The loading frequency is very broadband. For example, in blast of shock loading p can be
as high as 2/3n . Often, for wave propagation problems explicit numerical integration schemes are used
because thev are inexpensive and their restrictive time step is not of major concern because from accuracy perspective
small time steps should be taken.

NModal analysis vs. Direct numerical mtegration of MU + CU + KU = K 297

Note: For certain vibration problems where loading has a narrow frequency band but the content is high frequency, i.e., that
1= both @y, wpay are high but close to each other, we can omit the lowest natural modes whose frequencies are much smaller
than Wy, in the analysis. This reduced the number of modes that need to be considered.

e Linearity of the problem: Modal analysis is restricted to linear problems. Although, there may be cases that the nonlinear
response can be linearized about the current state or approaches that can expand the applicability of such eigen mode analyses,

¢ Influence of damping term: If the damping term is nonzero AND nondiagonalizable with modal analysis we eannot directly
use modal analysis for the solution of (174). Although, under structural dynamic loading we still can consider a much fewer
modes p < n but in this case p xi terms will be coupled through the damping terms in their corresponding temporal ODEs.

For further discussion rei:erzto Bathe, 2006 Example 9.11.
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fla)= o Je i tdt e (203a)
f(f}=%? / Fl@)e de (203b)
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Solving a SDOF with damping:
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Damping in a SDOF problem

e Recalling that 12 =

&

o

we define ratio of dynamic to static solution,
p \ Tdyn(W) 1

H(12,8) = —/——— = i _. =

e Faat(@) (1 — 2%) +25£0
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