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Even with damping we can solve a SDOF exactly with Duhamel's integral

e Furthermore the dyn: lution to |'|ﬂll'_'] (T + 2wr + w*r = f(t)) is obtained by the Duhamel integral:

YIAINIC S0
(t) _+/ F(r)e T sin ot — r)dr + e ¥ (asindt + Scos@t),  where @:=wy1—£2
w Jg

We rarely use this formulate if we cannot come of with a closed form
expression
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In modal analysis we do not need C.
But in some cases we need C. When?
If we do direct numerical integration of

ne el

¢ T
V(‘ {'WLY( K 0

M CU |, KU -R

o If for some reason, the explicit form of C is required, e.g., when (174) ( MU + CU 4+ KU = R) is numerically integrated in

time by explicit or implicit methods, we can form C by Caughey series,

r-1
. Lk ; s " 3 . : . (919
C M a[M™K]|", where a;. are solved from r simultaneous equations : (212a)

k=0
1 fag
3 2 .
Llfﬁ(—,‘m.\, FaW; + 0 Gy ‘). i=0.,(r—-1) (212b)
2 \w;

and r is the number of damping coefficients given t

If we only consider two terms

e For r = 2 we recover,

0
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Exact natural modes and frequencies
rodts dr=
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Error analysis for natural modes and frequencies
Preliminaries
Preliminaries: FEM global continuity level m — 1

3.1.7 Error analysis for natural frequencies and natural modes
o If the differential equation has 2m highest spatial derivative, shape functions must

e DBelow, two cases for bar and beam examples are shown:

- Bar Beam
PDE pASE — EA$E =0 pALTE - FIEY
2m 2 1

Global continuity €™ 1 0 1

wA ( 2L

Preliminaries: FEM global continuity level m — 1

Dynamic of continua Page 7



Preliminaries: FEM polvnomial order p

- Bar (1**order) Bar (2")

Sample shape function Ni=1 -‘rl- Ny =1 -jr‘ + :lg.r':

Maximum element order p 1 2

v)
NTONG 3
Vo . N Nilz) e
. ' .‘\ II\M.I_.-’-;\._J. m— X
""" x G . * [

e Note that the element maximum polynomial order p is not the same as minimum global required contimity m — 1.
For example, in the fi both ele; s are for the bar el rith ) (CY global continuity)
o For example, in the figure both elements are for the bar element with m — 1 = 0 (C” global continuity).

s Yet, the element on the left is 0'* order (p = 0) and on the right 1*order (p = 0).

Errors for natural modes and natural frequencies

A priori error estimates for natural frequencies and modes 248

® A priori error estimates for natural frequencies and natural modes are in the form,

nowet

0<wh —w < Cpirt! (222a)
alur ”&
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What does this mean?

h
0<wh—w; W / W,
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grid resolution h = the largest element size (size of an element is the radius of its circumseribing circle (2D) / sphere (3D))
1. 0 € wh —w,, i.e., having .;," < w is not preserved once the Galerkin rules are violated [?] (e.g., when reduced integration

or incompatible modes are employed or when lumped mass matrix is used).

. The rate of convergence (i.e., power of h) of eigenvalues is twice that of eigenfunctions in the H™ (Hilbert m norm)

[compare { nd I'Q?Qlﬂ)]. That is,

Natural frequencies converge twice faster than natural modes

3. The appearance of powers of the natural frequencies on the right-hand sides of (- and «,™ suggests
that the quality of approximation deteriorates for higher modes. Recal wr. This can be
explained that higher modes have higher spatial variability (wave number) and for the same resolution of FEM mesh h

it 1s more difficult to capture the exact solution.

hat wp < wy < -
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., by quadrature.

{. K. M (and C) are often integrated numerically, i

(a) For the convergence rates in h in (223) to hold:
<

I'he quadrature rule must be accurate enough to exactly integrate all monom through order j ) — 2 where
P = Order of the highest-order monor P 1 el nt ( Lior
p = Order of the element
m — 1 = Level of global continuity of FEM shape functions
(b) A sufficient condition for the convergence of modal quantities (as h — 0) is
igh to exactly integrate all monomials through order p —m (a weaker

T'he quadrature rule must be accurate enough
condition that having the full convergence rates
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