
ME, AE, BME517: Finite Elements for Engineering Applications HW5: 1D Quadrature

1. 50 Points Use a 3 point Gauss and 5 point Newton-Cotes quadrature rule to evaluate the fol-
lowing integral and obtain their respective errors with respect to exact value of the integral
Ie = tan−1(2)− tan−1(−1). Quadrature points and weights are given in fig. 1.

I =

∫ 2

−1

dx

1 + x2

Figure 1: Gauss and Newton-Cotes quadrature points.

2. 120 Points (reduced to 60 points) Figure 2 shows a second order element for 1D elastostatic
(bar) problem. The node numbering is different from the class as the middle node number is 3
rather than 2 for the purpose of static condensation. The element setup is shown in fig. 2. The
Matlab files LoadGPs.m (Gauss point table for number of Gauss points = 1, 2, 3, 4, 5 and 64)
ingegrandSolid1DExample.m (integrand of the stiffness matrix integral (3)) computeK1DSolid.m
(Main function for calculating stiffness matrix) are provided. The shape functions that are basi-
cally Lagrange functions for the points ξ = −1, 0, 1 are,

Ne =
[
N e

1 (ξ) N e
2 (ξ) N e

3 (ξ)
]
=

[
ξ(ξ−1)

2
ξ(ξ+1)

2 1− ξ2
]

⇒ (1a)

N′e =
∂Ne

∂ξ
=

[
2ξ−1
2

2ξ+1
2 −2ξ

]
(1b)

For brevity we drop the superscript e. For an “isoparametric” nodal coordinates xi are mapped
to coordinate x the same way that nodal solutions ai are mapped to element solution u using the
shape functions given in (1a). That is,

x = Σ3
i=1xiNi(ξ) ⇒ J =

∂x

∂ξ
=

L

2
(4αξ + 1), where α =

xave − x2
L

(2)

The nondimensional value α is a skewness measure of the map between ξ and x and xave =
x0+x1

2 .

Given that B = ∂N
∂x = ∂N

∂ξ
∂ξ
∂x = 1

J
∂N
∂ξ , dx = Jdx, ke =

∫ x1

x0
NTDNdx for constant D = EA we

obtain,

ke = AE

∫ 1

−1
K(ξ)dξ, where K(ξ) =

1

J(ξ)

2ξ−1
2

2ξ+1
2

−2ξ

 [
2ξ−1
2

2ξ+1
2 −2ξ

]
(3)

Answer the following questions:
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Figure 2: Second order element for 1D problems.

(a) 30 Points Full Rank Integration refers to the (polynomial) order of the integrand if i)
geometry is not skewed (e.g., J is constant), ii, iii) material response is linear (as σ = Eϵ
for constant E is used here) and homogeneous (e.g., E does not depend on ξ), iv) element
has uniform geometry (e.g., constant A here). Basically, it refers to the maximum order of
integrand only due to B terms.

i. What is full integration order for this second order bar?

ii. How many Gauss points and Newton-Cotes points must be used to exactly evaluate ke

for α = 0?

iii. Run the main Matlab function computeK1DSolid.m for non-skewed geometry ( Use
α = 0 as its only input parameter, that is run [Ks, ranks] = computeK1DSolid(0)).
The function outputs nquad (number of quad points), ke (ke), eigenvectors, eigenvalues,
and rankv (rank of ke) for number of quad points 1 to 5 and 64 respectively with a pause
between each set of input waiting for the user to proceed. Comment on the convergence
of the matrix as number of quad points increases.

(b) 30 Points Rank of the matrix: The rank of a matrix T , rank(T ), is the dimension of
its range R(T ) = {Tx|x ∈ Rn} where n the dimension (size) of the matrix. For a full-
rank matrix rank(T ) = n. The kernel or null space of a matrix T is the space of vectors
mapped to zero ker(T ) = {x|Tx = 0}. For a square matrix T of dimension n we have
dim(kerT ) + rank(T ) = n. Clearly, the number of zero eigenvalues is equal to dim(kerT )
and the corresponding eigenvectors are a basis for the kernel (i.e., their linear combinations
makes the space ker(T ).

For finite element stiffness matrices Ka = F kernel of the matrix has a physical meaning and
denotes a’s that are nonzero yet induce zero “loads”. In solid mechanics they correspond
to rigid body motions where nonzero a’s (displacements) result in zero F (nodal forces). A
finite element stiffness matrix should satisfy the following two conditions1:

� Have all physical null space modes (e.g., zero energy / rigid displacements for solid
mechanics). Otherwise, FEM solutions will predict/induce forces when there should not
be.

1We will discuss what the implications of this may be for large deformation settings in the class.
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� No nonphysical rank-deficiency: The stiffness matrix should not have a larger null space
than what the physics predicts, otherwise the elements will have nonphysical solutions,
e.g., (uncontrolled) rigid displacements under the application of no loads.

Answer the following very briefly:

i. Again by running 2.a.iii observe comment on the null space (dimension - rank) of the
stiffness matrices obtained by different integration orders and specify which integration
orders do not have the right rank?

ii. For the integration orders that provide the stiffness with the correct rank, how many rigid
displacement modes are there and what form of displacement the rigid displacements are?
Hint: Diagonal values of eigenValues are the eigenvalues and the corresponding columns
of eigenVectors are the eigenvectors.

(c) 60 Points (reduced to 30 points) Skewness: By increasing α → 0.5 (or decreasing to -0.5)
the middle point tends to one of the end points of the bar and the map between ξ and x
becomes more nonlinear.

i. Run computeK1DSolid.m for α = 0.1 and 0.2, list ke(1, 1) value for all computed number
of quadrature points, and comment on the convergence of the values in ke as the number
of quadrature points increase.

ii. What (if any) number of quadrature points can integrate ke exactly for α = 0.15?

iii. If we integrate ke with full integration order (2.a.i) there will be some errors from quadra-
ture. In general should we increase the number of quadrature points beyond this such
that the integral is evaluated very accurately or would a full integration order suffice?
What is your justification?

iv. Run computeK1DSolid.m for α = 0.26 and α = 0.32 and comment on the convergence
properties of the matrix as number of quadrature points increases.

v. For a map between parent coordinate ξ and x to be valid J > 0 (det(J) > 0 in higher
dimensions) at all points (it can be zero at a measure zero set), otherwise the map
between ξ and x is not one to one. For example there will be several ξ mapped to one x,
material can be mapped inside-out, etc.. Find the range of α where this does not happen
and can still evaluate stiffness matrix using isoparametric method. Compare this value
with α = 0.26, 0.32 from previous question and comment on it.

3. 90 Points In fig. 3 a third order 1D element is shown. Nodal coordinates and parent coordinates
are x1 = 0 , x3 = 2, x4 = 5, x2 = 10 and ξ1 = −1, ξ3 = −1

3 , ξ4 = 1
3 , ξ2 = 1, respectively. For the

following questions only provide function expressions (when needed) and do not simplify them.

Figure 3: Third order element for 1D problems.

(a) Obtain N1(ξ) to N4(ξ) using Lagrange functions.

(b) Write x = f(ξ) using isoparametric formulation (same shape functions map x1 to x4 to x (do
not simplify).

(c) Write the expression for J(ξ) (do not simplify).

(d) Write the order of integrand, number of Gauss point, and Gauss points for a full integration
scheme.
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(e) Write the number of Newton-Cotes points, and the points needed for full integration order.

(f) What rank of stiffness matrix should we obtain?
Hint: Consider rigid body motions.

4. (extra credit) 50 Points Derivation of Gauss points: In Bathe’s book section 5.5.3 (equa-
tions 5.144-5.149) it is shown that Gauss points are the roots of Legendre polynomials (cf. fig. 4).
This is implied by the following: Equation (5.149) specifies that the (yet unknown) polynomial
P of order n is normal to all polynomials of order 0 to n − 1 for the inner product given by
< f, g >=

∫ 1
−1 f(ξ).g(ξ)dξ. The discussion beforehand clarifies that the n roots of this polynomial

P are in fact the Gauss points of scheme with n points. Given that Legendre polynomials are
orthogonal with this inner-product:∫ 1

−1
Pm(ξ)Pn(ξ) dξ =

2

2n+ 1
δmn no sum on n (4)

equation (5.149) implies that P in that equation is (a constant factor of) Pn. Finally, (5.150)
provides an equation to evaluate weights wj (αj in text). For more detailed derivation of this
relation refer to 01 Gauss quadrature derivation of points weights.pdf.

(a) 15 Points Using P3 in fig. 4 obtain Gauss points and Gauss weight values for 3 point Gauss
rule and compare your results to the values given in fig. 1.

(b) 35 Points In many instances we are dealing with more general integrals of the form I =∫∞
−∞ f(ξ)ρ(ξ)dξ (ρ(ξ) ≥ 0). For example Gauss integration is a special case where ρ =
χ[−1 1]. Also in probability theory expected value of a quantity is defined as E(f(ξ)) =∫∞
−∞ f(ξ)ρ(ξ)dξ where ρ(ξ) is the probability density function (PDF) of the random variable
ξ. In the context of FEM formulation, the integrals of latter form are encountered in the
solution of stochastic PDEs. Ideally we want to derive quadrature rules for these more
general cases as I =

∫∞
−∞ f(ξ)ρ(ξ)dξ ⇒ Q(I) = Σn

i=1wif(ξi) where again ξi are quadrature
points and wi are quadrature weights. Given that we can define an inner-product of the
form < f, g >ρ=

∫∞
−∞ f(ξ)g(ξ)ρ(ξ)dξ we can use any orthonormalization scheme such as

Gram-Schmidt to form an orthonormal basis of Qi (Qi being a polynomial of order i) for
polynomial functions. That is,

< Qi, Qj >ρ= δij that is

∫ ∞

−∞
Qi(ξ)Qj(ξ)ρ(ξ)dξ = δij (5)

Following the proof in Bathe section 5.5.3 and the supplementary document above show that
for a quadrature scheme of n points,

ξi are the roots of polynomials Qn (6a)

wi =

∫ ∞

−∞
Li(ξ)ρ(ξ)dξ, where Li(ξ) =

∏n
j=0,j ̸=i(ξ − ξj)∏n
j=0,j ̸=i(ξi − ξj)

are Lagrange polynomials (6b)

for i = 1, . . . , n.
Hint: Equation (5) implies

∫∞
−∞Qn(ξ)ξ

kρ(ξ)dξ = 0, k = 1, . . . , n − 1 (Why?) and compare
it to Bathe’s equation (5.149).
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Figure 4: Legendre polynomials (Source: http://en.wikipedia.org/wiki/Legendre polynomials
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