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Weighted residual statement:

This is the basis of the weighted residual methods (including FEM)
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i Residual‘= error

All residuals are zero for the exact solution
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Weighted residual statement

A T2
First, we define the following function spaces, u is a general C* function
W = C°(D). 20a
A { _} { ) Ri=Lyl(u)-r HDJ
y =cM(D). (29b)
RJI =f- L.}'ir]
We seek a weak solution, u € V, that satisfies,
D7 R, =u-L,(u) e

»

YweW : [wR;dv+ faf-’u wRy ds + fa'Df wRrds =
JpW.(Lar(u) —r)dv + .fam w. (1 — Ly(u))ds + .’:ar:, w.(f=Ls(u))ds =0

Basically, a weak solution “weakly” satisfies all the PDEs and BCs by requiring
the residuals to be zero for arbitrary averaging schemes (through arbitrariness of
weight functions w). Next, we want to investigate the relationship between weak

and strong solutions.

Equivalence of weak and strong solutions

We do not discuss the existence and uniqueness conditions for either system at the mo-
ment. Rather, show that weak and strong solutions are equivalent. That is, a strong
solution is a weak solution and wise versa. From previous slides and the definition of a
strong solution we have: Function u € V is a strong solution if,

VxeD: Ri(u)= Ly(u)—r=0 PDE (30a)
Vx € 9Dy : Ru(u)= wa—Ly(u)=0 Essential BC (30b)
Vx € 9Dy : Ryu)= f—L;(f)=0 Natural BC (30c)

and from previous slide a weak solution u € V' satisfies:

YweW : [ wR:dv+ JrUDL. w. Ry ds + Jrapf w.Ryds =
ir‘ w.(Las(u) —r)dv + I,ra,p“ w.(— Ly(u))ds+ I,"HP! w.(f — Li(u))ds =0
. (31)

Reminder:

Strong form: Anything that is "strongly" satisfied at all points (either inside for PDE or
on boundary for BCs)

Weak form: Any statement written in integral form Qd( ((KA W%k;]’ i ‘WJ

i‘{m\/w{

Leaed  Saldion b SW Rl

Re(ars LM(u\ L0 Yaed
Ry = T = [0 Ve é

0 .. D/ I ,/»\I_\‘\

ME517 Page 3

ngb@/J S
0y

+ {whe &



N W LY e e N

Re@ - Lg(m -0 Vxe}% égﬁf .

=0

\IA«L N [y Se SQVS thal (‘f 3 \Q/ﬂdnm\ LS

R for /Q[// Wﬁl@]ﬂ fm&m\

hen muist be the £ Yacl olten

(‘ﬂm,{ () f?l‘ (we O (M(ﬂ):@ , Qg(u)ao
Mﬂ ?OM“\

Motivation

Why WR statement is

Slron gw\ b
'Y M
9 o ' %%

A O

U B, Rylu) »6-L 4
W eak freaop Ro(wr I-Lud
Qitonny fioRalw
oy,

J e R <0



Oy

: Weak
m{(ﬂfﬂ”lkwx oy arlol’IfA/D domant (¢ -

molt &;ﬁ()w\/\& thad M@‘M\:j % q\’gb(@:l
domaus oA O’E{\’\ c\((fm m)?@oomv\(\f (\oﬁcle,e(?f

\7[0\/ Nadon

2nd point in relation to solving an approximate solution
The idea that if a function satisfies WR for all weight functions must be the solution has profound practical importance:

Eventually in numerical setting we only satisfy WR for a finite number of weight functions (e.g. 1000) because we only have that
number of unknowns through the approximate solution we are trying to find.

The hope is that as number of w goes to infinity (e.g. we get close to the actual continuum WR statement) the approximate
solution tend to the exact solution. This in fact is the case and a part of the proof has to do with WR statement that stated for
infinite weights (all weights) the solution of the WR statement is in fact the exact solution. So as n (number of unknowns/weights)
increases in numerical setting we approach continuum WR solution which is nothing but the exact solution to the problem!

How WR => exact solution proof works
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Now we focus on weights that are zero only on ’6@

And show Rf is zero in a similar fashion.

Many different numerical methods are formulated by choosing which errors (residuals)
are satisfied strongly and which ones are satisfied weakly.

For example in conventional FEMs we
- Strongly satisfy Essential BCs
- Weakly (meaning by WR method) satisfy Natural BC and PDE

Motivation:
Why in conventional FEMs we strongly satisfy essential BC?

res W 05\

Example from beam problem —
. Weight Residual
Term Domain function | order function | order
Interior aD w QN@""’"')S\)(,X 0 (R, = g; (E.’ ';—;%) —-q | 4
—u’ M—N\ 2
Natural D¢ Wi = LT 6 Rp=|_ 1{_‘,':.{"";3 J 3
Boundary L v — - y) L L
] " O] r — I
Essential | 0D, | wu=[ il q : Wz vy J B
Boundary L (w . L ¥~y L
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Now that we have all the weights and residuals we can write the weighted residual
statement
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; Weight Residual

Term Domain function | order function | order @\9

~ Interior aD w 0 R = %’-’ (f:‘n' f:_;’l_{' —q | 4
o T — .

| Natural oD, =" J ! Ry = M — M(y) J 2 D

Boundary w 0 | V-V(y) | 3 |

Essential aD,, = | —M(w) Ry = 7 -y J 1
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Term Domain Weight Residual
! function | order function P
Interior | OD w 0 R = i= (B153}) 4
. ] —w 1 ) U — M(y) 2
Matural Dy Wy = w J 0 Ry = V- V() J 3
Boundary L LY L Y) ]
] ' i o
Essential 9Dy Wy = _\'?:i:] J i Ru = E: __‘:" J ‘I]
Boundary L } - 4 L v=y L
—_
where M(u) = E 1" % and V(u) = 4E :L'f
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The challenge of having high differentiation in
‘é WR is that eventually the functions that we choose
to approximate the solution should have that many
derivatives. However, these functions in FEMs are
) formed as piece-wise polynomial functions (one
\5 polynomial per element) which makes it difficult to
accommodate having such high number of
differentiation.
For example for a piece-wise linear solution we do not
\ / even have first derivative at all points and second
- derivative does not exist similarly.
v #P\ < y

For the beam problem discussed above we need 4
derivatives on solution y which makes forming these
piecewise polynomials even more difficult because at
Element boundaries they need higher level of
continuity
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The challenge of having many derivatives for y and w is that forming functions that
have so many derivatives in piecewise polynomial space that is used for FEM is very
difficult!

How can we fix this problem?

Step 1. get red of essential BC in WR so that the order of derivatives of w decreases
(we need to instead satisfy them strongly)

T D i Weight Residual

erm omain e inction | order function | order
Interior aD w 0 R; = ‘-‘f—fr_r (HJ’ %{’1) —q | 4

; —w' 1 M — M(y) 2
Natural dDI W= { w J 0 J sz V- V() J 3
Boundary - : L E
Essent'a],——‘ﬂzk Wu = “M(w) 2 l i } /tl]/
u__- r 1
Boundary v T il Y (yf
s Yo
Then we get

Dropping the WR term on Essential Boundary 9D,,.

We noticed that in the original statement w € ("3(D) because of the weighted residual term on
the essential boundary 9D,,. Suppose we could modify the weighted residual to (dropping the
integral on 9Dy).

vw € WWRS :/ w.R; d\'+/ WR;ds=0 (42)
D oDy

We will shortly discuss what the space WW/S would be. The weight and residual functions are:
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Term Domain Weight Residual
function | order function oraex
Interior aD w h R; = %:._, (L[.::_;.‘é) -q\|l 4 /"
7 —uw’ 1 ; M — M(y) 2
Natural r)D! Wy = { J M Ry = \‘ = e J l : J
) -1 $
Boundary U / v ) 3
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Step 2: Next class
Use integration by parts to transfer derivatives
from solution y to weight w
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