2016/09/08 Thursday, September 08, 2016 10:10 AM

Weighted residual statement:

This is the basis of the weighted residual methods (including FEM)

All residuals are zero for the exact solution

Weight part we multiply all periods by
weight
$$\mathcal{E}$$
 integrate them:
 $wR = \int w(\bar{x}) R_{ij}(uu) dV$
 $V \int w(\bar{x}) R_{ij}(uu) dS$
 ∂D_{i}
 $+ \int w(\alpha) R_{ij}(uu) dS$
 ∂D_{i}
 dD_{i}
 dD_{i}

ws1

Weighted residual statement

First, we define the following function spaces,

$$\mathcal{W} = C^0(\bar{\mathcal{D}}). \tag{29a}$$

$$\mathcal{V} = C^M(\bar{\mathcal{D}}). \tag{29b}$$

u is a general
$$C^M$$
 function
 $\mathcal{R}_i = L_M(\mathbf{u}) - \mathbf{r}$ $\partial \mathcal{D}_f$
 $\mathcal{R}_f = \bar{\mathbf{f}} - L_f(\mathbf{f})$
 $\partial \mathcal{D}_u$ $\mathcal{R}_u = \bar{\mathbf{u}} - L_u(\mathbf{u})$ x_1

We seek a weak solution, $\mathbf{u} \in \mathcal{V}$, that satisfies,

$$\forall \mathbf{w} \in \mathcal{W} : \int_{\mathcal{D}} \mathbf{w}.\mathcal{R}_i \, \mathrm{dv} + \int_{\partial \mathcal{D}_u} \mathbf{w}.\mathcal{R}_u \, \mathrm{ds} + \int_{\partial \mathcal{D}_f} \mathbf{w}.\mathcal{R}_f \, \mathrm{ds} = \\ \int_{\mathcal{D}} \mathbf{w}.(L_M(\mathbf{u}) - \mathbf{r}) \, \mathrm{dv} + \int_{\partial \mathcal{D}_u} \mathbf{w}.(\bar{\mathbf{u}} - L_u(\mathbf{u})) \, \mathrm{ds} + \int_{\partial \mathcal{D}_f} \mathbf{w}.(\bar{\mathbf{f}} - L_f(\mathbf{u})) \, \mathrm{ds} = 0$$

Basically, a weak solution "weakly" satisfies all the PDEs and BCs by requiring the residuals to be zero for arbitrary averaging schemes (through arbitrariness of weight functions w). Next, we want to investigate the relationship between weak and strong solutions.

Equivalence of weak and strong solutions

We do not discuss the existence and uniqueness conditions for either system at the moment. Rather, show that weak and strong solutions are equivalent. That is, a strong solution is a weak solution and wise versa. From previous slides and the definition of a strong solution we have: Function $u \in \mathcal{V}$ is a strong solution if,

$$\begin{aligned} \forall \mathbf{x} \in \mathcal{D} : & \mathcal{R}_i(\mathbf{u}) = & L_M(\mathbf{u}) - \mathbf{r} = 0 & \mathsf{PDE} & (30a) \\ \forall \mathbf{x} \in \partial \mathcal{D}_u : & \mathcal{R}_u(\mathbf{u}) = & \bar{\mathbf{u}} - L_u(\mathbf{u}) = 0 & \mathsf{Essential BC} & (30b) \\ \forall \mathbf{x} \in \partial \mathcal{D}_f : & \mathcal{R}_f(\mathbf{u}) = & \bar{\mathbf{f}} - L_f(\mathbf{f}) = 0 & \mathsf{Natural BC} & (30c) \end{aligned}$$

and from previous slide a weak solution $\mathbf{u} \in \mathcal{V}$ satisfies:

$$\forall \mathbf{w} \in \mathcal{W} : \int_{\mathcal{D}} \mathbf{w}.\mathcal{R}_{i} \, \mathrm{dv} + \int_{\partial \mathcal{D}_{u}} \mathbf{w}.\mathcal{R}_{u} \, \mathrm{ds} + \int_{\partial \mathcal{D}_{f}} \mathbf{w}.\mathcal{R}_{f} \, \mathrm{ds} = \int_{\mathcal{D}} \mathbf{w}.(L_{M}(\mathbf{u}) - \mathbf{r}) \, \mathrm{dv} + \int_{\partial \mathcal{D}_{u}} \mathbf{w}.(\bar{\mathbf{u}} - L_{u}(\mathbf{u})) \, \mathrm{ds} + \int_{\partial \mathcal{D}_{f}} \mathbf{w}.(\bar{\mathbf{f}} - L_{f}(\mathbf{u})) \, \mathrm{ds} = 0$$
(31)

Reminder:

Strong form: Anything that is "strongly" satisfied at all points (either inside for PDE or on boundary for BCs)

Weak form: Any statement written in integral form

if we have
exact solution

$$R_i(u) = L_n(u) - \Gamma = 0$$
 $\forall x \in D$
 $R_u(u) = u - L_u(u) = 0$ $\forall x \in \partial D_n$
 $D = \overline{D}$

Motivation:

Why WR statement is useful?

9De Weak integration over arbitrary domains is more deflicult that integrating over a fixed domain but with different integrands (because of stateners)

2nd point in relation to solving an approximate solution

The idea that if a function satisfies WR for all weight functions must be the solution has profound practical importance:

Eventually in numerical setting we only satisfy WR for a finite number of weight functions (e.g. 1000) because we only have that number of unknowns through the approximate solution we are trying to find.

The hope is that as number of w goes to infinity (e.g. we get close to the actual continuum WR statement) the approximate solution tend to the exact solution. This in fact is the case and a part of the proof has to do with WR statement that stated for infinite weights (all weights) the solution of the WR statement is in fact the exact solution. So as n (number of unknowns/weights) increases in numerical setting we approach continuum WR solution which is nothing but the exact solution to the problem!

Walgeridx =0 J(X) =0 Continuous ¥~}D Q(x,))0 Valve XL 96120 assum g(x.)70 XERG ω. Rao . 0 9(X_) \0 teg ⇒x, Jurnsan to make a contradiction 1.9 m/s/

How WR => exact solution proof works

a contradiction D 51.gar)/v>0 R(x,) >0 Yeu Jacki g(x) dx =0 D & continuous J g(x) \Longrightarrow JCX)~O $\forall \omega \int w \alpha R_i(u(x) dV_{=}0)$ 201 + JukiRu(u(xi))ds 1. Choose functions + J w(a) Ry(u(m)ds=0 w that are 0 on dDn & & Df to 346 get riz of Ind & ased D. 3rd lines $\int w \frac{R_i(u(n)) dV}{g(x)} = 0$ $R_i(u(n)) = 0$ YWE w Ru(uu) ds $\forall \omega$

ME517 Page 6

vw

 $\int w R_{f}(u(n)) ds = 0$ +

Now we focus on weights that are zero only on

And show Rf is zero in a similar fashion.

Many different numerical methods are formulated by choosing which errors (residuals) are satisfied strongly and which ones are satisfied weakly.

9Db

For example in conventional FEMs we

- Strongly satisfy Essential BCs
- Weakly (meaning by WR method) satisfy Natural BC and PDE

Motivation:

Now that we have all the weights and residuals we can write the weighted residual statement

Now that we have all the weights and residuals we can write the weighted residual statement
Term Domain Weight Residual function order function order
Interior $\partial \mathcal{D}$ w 0 $\mathcal{R}_i = \frac{d^2}{dx^2} \left(EI \frac{d^2 y}{dx^2} \right) - q 4$
Natural Boundary ∂D_f $w_f = \begin{bmatrix} -w \\ w \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\mathcal{R}_f = \begin{bmatrix} M - M(y) \\ \bar{V} - V(y) \end{bmatrix}$ $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
Essential Boundary $\partial \mathcal{D}_u$ $w_u = \begin{bmatrix} -M(w) \\ V(w) \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \mathcal{R}_u = \begin{bmatrix} \bar{y}' - y' \\ \bar{y} - y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathcal{A}$
WR. $\int w(x) dt = (ET \frac{t'y}{dx^2}) - g dx \partial h \partial p$
+ $\int \left\{ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right\} = \left\{ \frac{1}{\sqrt{2}} + 1$
I to evaluate a x=L
$ + \left(\begin{array}{c} -\mathcal{M}(w) \\ \mathcal{J}_{Du} \end{array} \right) \left[\begin{array}{c} -\mathcal{M}(w) \\ \mathcal{V}(w) \end{array} \right] \cdot \left[\begin{array}{c} \ddot{y}' - \dot{y}' \\ \mathcal{Y}_{-} \dot{y} \end{array} \right] = 0 $ $ x = 0 $
Vendration @ x=U
$\int W \left\{ \begin{array}{l} \frac{d}{dx^{2}} \left(EI \frac{dY}{dx^{2}} + 9 \right) \right\} dx \\ \frac{d}{dx^{2}} \left(EI \frac{dY}{dx^{2}} + 9 \right) \right\} dx \\ \frac{d}{dx^{2}} \left(\frac{d}{dx^{2}} + 9 \right) \left\{ \frac{d}{dx^{2}} + \frac{d}{dx$
$\left[\left[\left$

			\sim	• •	~ ~ ~	d
Term	Domain	Weight		Residual		
		function	order	function	order	
Interior	$\partial \mathcal{D}$	w	0	$\mathcal{R}_i = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(EI \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) - q$	4	
Natural Boundary	$\partial \mathcal{D}_f$	$\mathbf{w}_f = \begin{bmatrix} -w' \\ w \end{bmatrix}$	$\begin{bmatrix} 1\\0 \end{bmatrix}$	$\mathcal{R}_f = \left[\begin{array}{c} \bar{M} - M(y) \\ \bar{V} - V(y) \end{array} \right]$	$\begin{bmatrix} 2\\3 \end{bmatrix}$	
Essential Boundary	$\partial \mathcal{D}_u$	$\mathbf{w}_u = \begin{bmatrix} -M(w) \\ V(w) \end{bmatrix}$	$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	$\mathcal{R}_u = \left[\begin{array}{c} \bar{y}' - y' \\ \bar{y} - y \end{array} \right]$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	

where $M(u) = EI \frac{\mathrm{d}^2 u}{\mathrm{d}x^2}$ and $V(u) = \frac{\mathrm{d}EI}{\mathrm{d}x} \left(\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} \right)$.

Solution should have 4 derivation y, y, y, y(3) (4)

bownday

For the beam productives on sol piecewise polynom Element boundaring continuity

The challenge of having high differentiation in WR is that eventually the functions that we choose to approximate the solution should have that many derivatives. However, these functions in FEMs are formed as piece-wise polynomial functions (one polynomial per element) which makes it difficult to accommodate having such high number of differentiation.

For example for a piece-wise linear solution we do not even have first derivative at all points and second derivative does not exist similarly.

For the beam problem discussed above we need 4 derivatives on solution y which makes forming these piecewise polynomials even more difficult because at Element boundaries they need higher level of continuity

 \mathbf{O}

blam problem

0

0

The challenge of having many derivatives for y and w is that forming functions that have so many derivatives in piecewise polynomial space that is used for FEM is very difficult!

How can we fix this problem?

Step 1. get red of essential BC in WR so that the order of derivatives of w decreases (we need to instead satisfy them strongly)

Torm	Domain	Weight		Residual		
Term	Domain	function	order	function	order	
Interior	$\partial \mathcal{D}$	w	0	$\mathcal{R}_i = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(EI \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) - q$	4	
Natural Boundary	$\partial \mathcal{D}_f$	$\mathbf{w}_f = \begin{bmatrix} -w' \\ w \end{bmatrix}$	$\left[\begin{array}{c}1\\0\end{array}\right]$	$\mathcal{R}_f = \left[\begin{array}{c} \bar{M} - M(y) \\ \bar{V} - V(y) \end{array} \right]$	$\begin{bmatrix} 2\\3 \end{bmatrix}$	gel
Essential Boundary	$\partial \mathcal{D}_u$	$\mathbf{w}_u \equiv \begin{bmatrix} -M(w) \\ V(w) \end{bmatrix}$	$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	$\mathcal{R}_u = \begin{bmatrix} \bar{y}' - y' \\ \bar{y} - y \end{bmatrix}$		adal
						Jus row

Then we get

Dropping the WR term on Essential Boundary $\partial \mathcal{D}_u$.

We noticed that in the original statement $w \in C^3(\mathcal{D})$ because of the weighted residual term on the essential boundary $\partial \mathcal{D}_u$. Suppose we could modify the weighted residual to (dropping the integral on $\partial \mathcal{D}_u$).

$$\forall \mathbf{w} \in \mathcal{W}^{\text{WRS}} : \int_{\mathcal{D}} \mathbf{w}.\mathcal{R}_i \, \mathrm{d}\mathbf{v} + \int_{\partial \mathcal{D}_f} \mathbf{w}.\mathcal{R}_f \, \mathrm{d}\mathbf{s} = 0 \tag{42}$$

We will shortly discuss what the space $\mathcal{W}^{\mathrm{WRS}}$ would be. The weight and residual functions are:

Term	Domain	Weight		Residual		
		function	order	function	order	- solution
Interior	$\partial \mathcal{D}$	w	8	$\mathcal{R}_i = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(EI \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) - q$	4	50000
Natural Boundary	$\partial \mathcal{D}_f$	$\mathbf{w}_f = \begin{bmatrix} -w'\\ w \end{bmatrix}$		$\mathcal{R}_f = \left[\begin{array}{c} \dot{M} - M(\dot{y}) \\ \bar{V} - V(y) \end{array} \right]$	$\begin{bmatrix} 2\\3 \end{bmatrix}$	

Step 2: Next class Use integration by parts to transfer derivatives from solution y to weight w Otherder 4th order