Course webpage:
http://rezaabedi.com/teaching/me-517-finite-elements/

Selected Bibliography

- Jacob, Fish, and Belyscchko Ted. A first course in finite e elements. Wiley, 2007. link \rightarrow easy to read, gand Pelerence for bars, beams,

- T. J. R. Hughes; The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, 2000. ISBN : 978-0486411811 (H). link
- R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite Element Analysis, Wiley, th Edition, 200 1.ISBN: 0471356050 (C). link
- o O.C. Sienkiewicz, R.L. Taylor, J.Z. Zhu; The Finite Element Method: Its Basis and Fundamentals, Butterworth -Heinemann; 7th edition, 2013. ISBN: 1856176339 (Z). link

From http://rezaabedi.com/teaching/me-517-finite-elements/
About 40\% of the course is about balance laws, strong form, weak form, and finite element formulation (beginning of the course).
This part is more mathematical and the course notes are the best reference for this part.
You can download course notes from:
http://rezaabedi.com/wp-content/uploads/Courses/FEM/c FEM.pdf

Course outline:

1. Finite element (\&spectral methods, a bit finite difference) formulation

40%, a bit more mathematical
2. 1D elements (bar, beam, truss, and frame problems)

Each element type provides a new concept
3. 2D/3D problems:
a. Elastostatics (with some notes of elastodynamics)
b. Heat conduction

- Numerical integration (quadrature)
- Isoparametric 2D/3D elements

4. Finite element implementation (how to code an FEM using

- Exams) (subject to change):

Often takehme $\gg 8 \%$

- Assignments: Homework assignments take up 50% of the grade. Assignments typically involve a computational part that requires writing/modifying small computer codes (Matlab, $\mathrm{C}++$) or using commercial packages such as COMSOL. The assignments include challenge problems" that can add up to $5-10 \%$ to the final grade. Percentage can be subject to change. 60%
- Term projects): Computer FEM code $(\$ \%) \&$ commercial FEM software (13\%)

Ansys (we) $\cdots \cdots$ Aboqus2\%

- Absences and excused grades: Excuses will be given only under the following circumstances:
for fivid/thermal you can chase andher project
- illness
- personal crisis (e.g. automobile accident, death of a close relative) otherwise there is a 15% penalty per day for late assignments.

1. Finite element formulation

If you understand this part well:

- (Continuous) Finite element method
- Spectral method
- Discontinuous Galerkin (DG)
- Finite Volume
- Finite Difference

Bar problem

$$
F=k \Delta u
$$

(c) what if we have a finite bor Exotic medalist

(2)

unknown is displadmalu What is the differential aquatic
(1)
(1) $\varepsilon=\frac{\hat{\Delta}^{\text {change. of lengh }}}{\downarrow_{\text {ariginal length }}^{L}}$

radia' $d A$
soface
aree ifferemilic $d A$

$$
\stackrel{\rightharpoonup}{t}=\frac{d \vec{F}}{d \vec{A}}
$$

$\left.\begin{array}{rl}\sigma & =E \varepsilon=E \frac{\Delta u}{L} \\ \text { (3) } F & =\delta A\end{array}\right\} \rightarrow \longleftrightarrow$
(3) $\sigma=\frac{F}{A}$
(Ia) $F=\left(\left.\frac{\frac{E A}{L}}{\substack{b \\ \text { sping }}} \right\rvert\, \begin{array}{c}\text { stifiners }\end{array}\right.$

pot 2 of the courrse

- Jacob, Fish, and Belytschko Ted. A first course in finite elements. Wiley, 2007. link

Ia \rightarrow writing $F=\frac{A E}{L} \Delta U$ in $F E M$-fuppodly form
(1)
(2)

$$
\begin{gathered}
\stackrel{\rightharpoonup}{F_{1}} \xrightarrow[F_{1}]{\rightarrow} \rightarrow \overrightarrow{F_{2}} \rightarrow \overrightarrow{F_{2}=F} \\
F=\frac{\Delta E}{L}\left(u_{2}-u_{1}\right) \Delta u=u_{2}-u_{1} \\
F_{1}=-F=\frac{A E}{L}\left(u_{1}-u_{2}\right) \\
F_{2}=F=\frac{A E}{L}\left(u_{2}-u_{1}\right)
\end{gathered}
$$

Finite Element persia of

u_{3}

Q2) What is the relation between $F_{2}^{l e} F_{1}^{e} \& F_{2}$

$$
\begin{aligned}
& F_{2}=F_{2}^{u}+F_{1}^{e_{2}} \\
& F_{2}=\underbrace{F_{2}^{e_{1}}+F_{1}^{e_{2}}}=\underbrace{\left(\frac{A E}{L}\right)_{1}\left(u_{2}-u_{1}\right)}+\underbrace{\left({ }_{L}^{(E)}\right)\left(u_{2}-u_{3}\right)} \\
& \left.\left.\left.F_{2}=\left(\frac{A E}{L}\right)_{1}\left(-u_{1}\right)+\left(\frac{d E}{C}\right)_{1}+\frac{d E}{C}\right)_{2}\right) u_{2}-\frac{A E}{L}\right)_{2}\left(u_{3}\right)
\end{aligned}
$$

This process:

- Noting that neighboring element displacements (unknowns) are the same
- Their "forces" ADD with each other
- Add contribution of all elements
is called Assembly

K_{2}
$\left.\left(\frac{A E}{L}\right)_{1}+\left(\frac{A E}{L}\right)_{2}-\left(\frac{A E}{L}\right)_{2}\right)$ $00\left|\left\lvert\, \begin{array}{ll}k_{1} \\ w_{2} & \rightarrow 0 \\ v_{2}\end{array}\right.\right.$

Trusses:

FEM packages:

- We always work with geometry objects (vertices, lines, surfaces, volumes). For example, we even apply the loads and other PCs on geometry. Finally, we mesh the geometry.
- The only exception is for domains with 1D elements. In this case, we directly specify FEM objects (nodes and elements)

Launch Ansys Product Launcher

1. Define elements to be used

We are going to use link elements (truss elements)
SNVE DED RESMM DE OUT POWGGPPH

3. Define section properties
$A_{0}=10$
$A_{2}=10 C$

Add section 2
You can list materials and sections
4. Define nodes:

5. Step 4: define elements

Choose default material number
Choose default section number

For element 2: change A from A1 to A2

Show the element numbering

Elot	PlotCtris WorkPlane	Parame
29].	Pan Zoom Rotate View Settings	
	Numbering	
	Symbols Style	

If want to check elements are formed correctly

LIST ALL SELECTED ELEMENTS. (LIST NODES)
ELEM MAT TYP REL ESY SEC NODES
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{llllllll}2 & 1 & 1 & 1 & 0 & 2 & 2 & 1\end{array}$
$\begin{array}{llllllll}3 & 2 & 1 & 1 & 0 & 2 & 3 & 1\end{array}$
6. BCs:
a. Displacements:

EPreferences
P Preprocessor
© Element Type
we Element Type
\mathbb{R} Real Constants

- Material Props
\boxplus Sections

\square Modeling
\mathbb{E} Modeling
\boxplus Meshing

* Checking Ctris
© Numbering Ctris
® Archive Model
\boxplus Coupling / Ceqn
E Loads
©Analysis Type
- Define Loads
(1) Settings
B Apply

日 Apply

- Displacement

д On Lines
дOn Areas
मOn Areas
\Rightarrow On Keypoints
\Rightarrow On Nodere
\Rightarrow On Node Compenents
© Symmetry B.C.
a Symmetry B.C
antisymm B.C.
© ForceMMoment
© Pressure

b. Forces

Preprocessor stage is finished．

Postprocess：
View and list the results

1．Deformed shape
2．Elements solutions（axial force and stress）
3．Displacements for free degrees of freedom（dof）
4．Forces for prescribed doff（called Reaction forces）

1．Deformed shape
－General Postproc Data \＆File Opts
Results Summary
© Read Results
－Failure Criteria
日 Plot Results
日 Deformed shape
Don tor
Contour Plot Contour Plot \pm Vector Plot M Plot Path item
⿴囗十m Concrete Plot © Concrete
© Thin Film

⿴囗十 aery Results
Options for Out
Results Viewer
＠Nodal Calces

Prescribed，Dirichlet dof
－we know the displacement（primary field）
－We don＇t know the force
Free（Neumann）oof
－We don＇t know the displacement（primary field） －We know the force

pamirs

EDetailed Summary
EPercent Error
－Sorted Listing
ENodal Solution
E Eloment Solution
－SpotWeld Solution
－Reaction Solu
ENodal Loads
EVem Table Data
－Vector Dams
日Linearized Strs
®Query Results
PRINT ELEM ELEMENT SOLUTION PER ELEMENT
＊＊＊＊＊POST1 ELEMENT SOLUTION LISTING＊＊＊＊＊

LOAD STEP 1 SUBSTEP＝ 1
TIME $=1.0000 \quad$ LOAD CASE $=0$
EL＝ 1 NODES $=2 \quad 3$ MAT $=1 \mathrm{XC}, \mathrm{YC}, \mathrm{ZC}=0.000 \quad 1.400 \quad 0.000 \quad$ AREA $=100.00 \quad$ LINK180
FORCE $=0.42857 \quad$ STRESS $=0.42857 \mathrm{E}-02$ EPEL $=0.21429 \mathrm{E}-04$
TEMP $=0.00 \quad 0.00$ EPTH $=0.0000$
$E L=2$ NODES $=21 \mathrm{MAT}=1 \mathrm{XC}, Y C, Z C=0.8000 \quad 0.6000 \quad 0.000 \quad$ AREA $=10.000$
LINK180 FORCE $=-0.71429$ STRESS $=-0.71429 \mathrm{E}-01$ EPEL $=-0.35714 \mathrm{E}-03$
TEMP $=0.00 \quad 0.00$ EPTH $=0.0000$
$\begin{array}{rcccccc}\mathrm{EL}= & 3 \text { NODES }= & 3 & 1 \mathrm{MAT}= & 2 \mathrm{XC}, \mathrm{YC}, \mathrm{ZC}=0.8000 & 2.000 & 0.000 \\ \text { FORCE }=0.80812 & \text { AREA }=10.000 & \text { LINK180 }\end{array}$ FORCE $=0.80812$ STRESS $=0.80812 \mathrm{E}-01$ EPEL $=0.80812 \mathrm{E}-02$
TEMP $=0.00 \quad 0.00$ EPTH $=0.0000$

PRINT U NODAL SOLUTION PER NODE
＊＊＊＊＊POST1 NODAL DEGREE OF FREEDOM LISTING＊＊＊＊＊

LOAD STEP $=1$ SUBSTEP $=1$
TIME $=1.0000$ LOAD CASE $=0$
the following pegree gf freedom results are in the global coordinate system
NODE UX tree UY UZ USUM
1 0．12690E－001－0．18170E－001 $0.0000 \quad 0.22163 \mathrm{E}-001$
$20.0000-0.60000 \mathrm{E}-0040.0000 \quad 0.60000 \mathrm{E}-004$
$30.50000 \mathrm{E}-0020.0000$ g． $0000 \quad 0.50000 \mathrm{E}-002$
4．Forces for prescribed dofs（called Reaction forces）

eneral Postproc Data \＆File Opts Results Summary Read Results Failure Criteria Plot Results List Results EDetailed Summary 日literation Summry －Percent Error © Sorted Listing E Nodal Solution －Superelem DOF EspotWeld Solution 日 Reaction Solt Nodal Loads． －Elem Table Data E Vector Data

PRINT F REACTION SOLUTIONS PER NODE
＊＊＊＊＊POST1 TOTAL REACTION SOLUTION LISTING＊＊＊＊＊

LOAD STEP $=1$ SUBSTEP $=1$
TIME $=1.0000$ LOAD CASE $=0$
THE FOLLOWING X，Y，Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

IIVIE $=1$. UUUU LUAU CASE $=U$
THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

$$
\begin{array}{lrcc}
\text { NODE PX } & \text { FY } & \text { EZ } \\
20.57143 & & \\
3-0.57143 & 1.0000 &
\end{array}
$$

TOTAL VALUES
VALUE -0.77716E-015 $1.0000 \quad 0.0000$

HW1 and final project is a truss problem

2D example
Project 1, a dental crown problem

$$
P=\frac{f}{\pi r^{2}}
$$

$F=\pi r^{2} p$

2. Materials

And then 2

Creating the areas

－Preferences

－Preprocessor
© Element Type
田 Real Constants
Material Props
\boxplus Sections
日 Modeling
\＆Create
© Keypoints

ョAreas
© Arbitrary
日 Rectangle дBy 2 Corners
By Centr \＆Cornr EBy Dimensions
m Circla

	－ $\mathbf{x}^{\text {® }}$

Toolbar
SAVE＿DB RESUM＿DB QUIT POWRGRPH

ect List Plot Plot́tris WorkPlane Parameters Macro MenuCtrls Help

We need to merge the keypoionts and after that the connecting lines will also merge

LIST ALL SELECTED KEYPOINTS. DSYS= 0

NO. X,Y,Z LOCATION KESIZE NODE ELEM MAT REAL TYP

ESYS										
1	0.00	0.00	0.00	0.00	0	0	0	0	0	0
2	10.0	0.00	0.00	0.00	0	0	0	0	0	0
3	10.0	1.00	0.00	0.00	0	0	0	0	0	0
4	0.00	1.00	0.00	0.00	0	0	0	0	0	0
7	10.0	3.00	0.00	0.00	0	0	0	0	0	0
8	0.00	3.00	0.00	0.00	0	0	0	0	0	0

Dividing the top line to 5 segments so we can apply the load on the first
created segment from the left
© Extrude
フExtend Line
日 Booleans
田 Intersect
© Add
¥ Subtract
曰 Divide
刃Volume by Area
万 Volu by WrkPlane
ภArea by Volume
∇ Area by Area
ת Area by Line
∇ Area by WrkPlane
ภ Line by Volume
∇ Line by Area
R Line by Line
R Line by WrkPlane
8 Line into 2 Ln＇s
万 Line into N Ln＇s

Boundary conditions
－We don＇t need to specify that the left edge is the axis of symmetry
－Fix the bottom line：

Preferences Preprocessor © Element Type \boxplus Real Constants © Material Props \boxplus Sections \boxplus Modeling \boxplus Meshing © Checking Ctris ¥ Numbering Ctrls © Archive Model 日 Loads －Analysis Type 曰 Define Loads 日 Apply 曰 Structural в Displacement	LINES LIT minn Apply U，ROT on Lines

After fixing all dofs on the bottom surface

Apply the pressure on the top surface - first segment

no ned here

- Loads
\boxplus Analysis Type
日 Define Loads
\pm Settings
- Apply
- Structural
\boxplus Displacement
© Force/Moment
a Pressure
8 On Lines

Meshing

First thing，we define material number for each area
wrear unstanto
⿴囗十 Material Props
－Sections
\boxplus Modeling
■ Meshing
日 Mesh Attributes EDefault Attribs EAll Keypoints дPicked KPs All Lines万 Picked Lines
－All Areas \Rightarrow Picked Areas EAll Volumes －Picked Volumes
 －MeshTool ¥ Size Cntrls －Mesher Opts

List the areas

LIST ALL SELECTED AREAS．

Pick all areas:

Solution:

Postprocess:
-
■ General Postproc - Data \& File Opts EResults Summary \boxplus Read Results
© Failure Criteria

- Plot Results Deformed Shape

Contour plots
Choose 1st principle stress from the list of nodal contour plot:

Min and max sigma_1 for the whole domain

Plotting the results for certain number of layers
Select -> entities ->

Here the plot for the bottom layer

Specifying the range of contour plot:

FEM Formulatiai
(1) Balance laws

subidanan, $1>\rightarrow$ demain.

$$
\begin{aligned}
& 2+_{\infty \omega}=0
\end{aligned}
$$

2 (2) we will derme strong form = (Partial) Differential Equodin

$$
\underbrace{(P D E)}_{\substack{\text { divergence } \\ \text { therem }}} \quad(\forall x \in \alpha O
$$

(3)

$$
\overbrace{\substack{\text { resideol }}}=\nabla \cdot \sigma+\rho b
$$

"eror"
Weaghted Residual Statemert (WRS)

(4)

∞ unknown $\rightarrow \mathbb{N}$ cnkrowis $\left(a_{1}, \ldots, a_{n}\right)$
$\Rightarrow N$ equations
aRAl $\operatorname{satisy}(A)$ for $W_{1}, \omega_{2}, \cdots \omega_{n}$ well chose these send ~.

$$
\forall i \in\{1, N\} \quad \int_{\infty} w_{i}\left(\nabla \cdot \sigma+p_{b}\right)=0
$$

Find a's
fully known
$n \rightarrow \Sigma \rightarrow 0 \ldots$

$$
\underset{x}{x} \wedge^{\phi_{2}} \star_{2}
$$

Different methods have different forms of shape function

Spectral method

Discontinuous Galerkin -> Different basis functions

FEM formulation in detail

1. Balance law

- Why start with a balance law?
- They are the actual physics laws.
- They contain more information than their corresponding PDEs.
- Larger solution space than the PDEs.
- Can we directly start the FE formulation from a PDE?
- Yes, FE formulation starts from a differential equation.
- A PDE may not be derived from a balance law.

Balance of mass, force (linear momentum), energy, ...

Example of balance of force in discrete setting:

$\rightarrow\left(k_{1}+k_{2}\right) r=P \rightarrow r=\frac{P}{k_{1+} k_{2}}$

$$
\sum F=0
$$

$$
\begin{aligned}
\stackrel{\text { Types of forces: 1. volumetric force }}{F_{V}} & =\sum \overrightarrow{A F_{V}}=\sum \frac{\overrightarrow{\Delta F}_{V}}{\overrightarrow{\Delta V}} \Delta V \\
& =\int_{\sim}(\rho b) d V
\end{aligned}
$$

Surface force

$$
\begin{aligned}
& \overrightarrow{F_{s}}=\sum \Delta \overrightarrow{F_{s}} \\
& =\sum \frac{\Delta \overrightarrow{F F}_{s}}{\Delta 5} \Delta S
\end{aligned}
$$

lat $\Delta_{s} \rightarrow 0$
r r. \wedge r 11

Surface force

$$
\begin{aligned}
\overrightarrow{F_{s}}= & \sum \Delta \vec{F}_{s} \\
= & \sum \frac{\Delta \overrightarrow{F F}_{s}}{\Delta s} \Delta S \\
& \operatorname{lot} \Delta_{s \rightarrow 0} \\
= & \int_{\omega}\left[\lim _{\substack{ \\
\Delta s \rightarrow 0}}^{\left.\left(\frac{\Delta F_{s}}{\Delta s}\right)\right] d S}\right.
\end{aligned}
$$

$$
\sigma:\left(\begin{array}{lll}
\sigma_{1} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & - & \\
\sigma_{33}
\end{array}\right)
$$

$$
t_{2}\left(\begin{array}{l}
t_{1} \\
t_{7} \\
t_{5}
\end{array}\right) n \cdot\left(\begin{array}{l}
n_{1} \\
n_{7} \\
n_{3}
\end{array}\right)
$$

stoss tensor
for a suface ailh namal ol long x, cxis Dk x_{1}
$\sigma=8^{\top}$, $\sigma_{12}=\sigma_{2} 1$ (Balarice of angulor mamatich for arbitrany dreodua

energy flux per surface area for nomal n

In general

$$
\left(f_{n}\right)_{n}=f_{x} \cdot n
$$

clways one tensor ader highert

Let's continue with balance of forces
Ho
$\sum F=F_{v}+F_{5}$

Divergence / Gouss therem

PDE/ $\quad 7.6+\rho b=0$
strang form
Example $1 D$

Genenal Balance law

$$
\forall \omega S D
$$

f : quentity to be balanced

$v \omega>v$
f_{t} : quantity to be balanced density

spatial $\operatorname{llw}_{x} x$
density

(30) Dynamic Balance law for $F_{t=} \int_{\omega} f_{0} d u$

First dx a mic: $\left.\forall \omega \int_{\omega} \frac{d}{d t} f_{t}+D \cdot f_{x}-S\right) d V=0$ $1 \frac{d}{x} f_{h}+A_{i} f_{x}-S=0{ }^{(3 b}$ Dynamic PDE

$\xrightarrow{\text { Dynamic PDE }}$

Example 2 soled wodhamis

$$
\frac{d}{d t} \vec{v}+\nabla_{0}(-b)-p b=0 \quad \text { Equation \& medici }
$$

Static / steady state problems

no change in time

$$
=\int_{\omega} 8 d v \rightarrow
$$

Summary slide
General form of balance laws
For a general conservation law let:

- f_{t} : conserved quantity $=$ temporal flux
- f_{x} : total outward spatial flux
- r: source term
then the balance law for dynamics reads:

then the balance law for dynamics reads:

$$
\begin{equation*}
\forall \omega \subset \mathcal{D} \wedge \forall t: \int_{\omega} \mathrm{rdv}-\int_{\partial \omega} \mathrm{f} \cdot \mathrm{ds}=\int_{\omega} \mathrm{rdv}-\int_{\partial \omega}\left(\mathrm{f}_{x} \cdot \mathbf{n}\right) \mathrm{ds}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\omega} \mathrm{f}_{t} \mathrm{dv} \tag{13}
\end{equation*}
$$

For static case the RHS is zero (ie., the quantity $\int_{\omega} f_{t} d v$ remains constant). The static balance law reads:

$$
\begin{equation*}
\forall \omega \subset \mathcal{D}: \int_{\omega} \mathbf{r d v}-\int_{\partial \omega} \mathbf{f}_{x} \cdot \mathrm{ds}=\int_{\omega} \mathbf{r} \mathrm{dv}-\int_{\partial \omega}\left(\mathbf{f}_{x} \cdot \mathbf{n}\right) \mathrm{ds}=\mathbf{0} \tag{14}
\end{equation*}
$$

These can be directly compared to $\mathbf{F}=\mathrm{d} \mathbf{P} / \mathrm{d} t$ and $\mathbf{F}=0$ in previous discrete examples.
$13 / 456$

You can skip slides 6-14, except slide 13, the static part of it

We'll discuss divergence theorem and localization theorem

Divergence theorem

$$
\int_{a}^{b} F(x) d x=f(b)-f(a)
$$

ID

$$
\left(f: \int F_{f} \in E=f^{\prime}\right)
$$

that $\int^{\text {is }} f^{\prime}(x) d x=f(b) \cdot 1+f(a) \cdot(-1)$

Divergence theorem is multi-dimension version of fundamental theorem of calculus (turning line integral to values at end points)
Which one is more general

$$
S F=\int_{\omega}^{\text {Moral }} \rho b d V+\int_{\omega} \sigma \cdot \sigma_{\text {sin }} n d \rho
$$

For the balance law, all we need is that the spatial flux (sigma here) to be integrable over the boundary of omega. However, for getting to $D E$, ie. the blue term divergence of spatial flux should exist and in fact should be continuous.
C^{0} function is contivaus

Divergence theorem

Divergence the rem requires Diff to exist Q to be contenvas $f_{C}(B)$
this is mostrictive. For balance law of shall be integrable
this is restrictive. For balance law of should be integrable

Localization theorem:

$$
\forall_{Q} \subseteq D \quad \int_{W} g(\vec{x}) d V=O
$$

$\pi \exists x_{0} \in D$ such that $g\left(x_{0}\right)>0$ there is a neighbarmodes af $x_{0} \rightarrow g(x)>0 \quad$ from continuity

1D bar problem: Balance law (balance of forces), Differential Equation, Boundary Conditions (BCs), constitutive equation

Balance of fores
 "Balance haw"
\downarrow

$$
F(x)
$$

$F(x+\Delta x)$ tensile >0

(1D) $D E \quad \frac{d F(x)}{d x}+q(x)=0$
Closing the systion

$$
\text { stress } \sim \sigma(x)=\frac{F(x)}{A(x)}
$$

Strong form 15 bar problem
Some BC's are in termes of $\cup \&$ we need to expross σ in ternsof U :

ausplacenent u is the pinmory fistd
constitatwe equs are empirical sqns
(3) $\varepsilon(x)=\frac{\partial u(x)}{d x}$ first closs
compatibility equ
(1) $,(2),(3) \rightarrow$

DE
(4) $\underbrace{(\cdots-\pi}_{\underbrace{A(x) \sigma(x)}_{A t(x)-N(x) E(x)})^{\prime}+q(x)=\left(E A(x) U^{\prime}(x)\right)^{\prime}+q(x)=0}$

$$
\begin{aligned}
& \frac{1}{U(x-0)=\bar{U}} \quad U(x=L)=\bar{F} \\
& D D_{U}=\operatorname{cssen} \text { bundot ot } D \\
& \text { Essential BC } \\
& \text { "speeify the primary freld of } \\
& \text { Here } \partial D_{u}=\{0\} \\
& \text { Natural bansay } \partial D_{c}\{0,1\} \\
& \text { "specily the spatial } \\
& \text { flus } \\
& \partial D_{f}=\text { natural boundmy } \\
& \partial \Xi_{f}=\{l\}
\end{aligned}
$$

$$
\partial \theta_{n} \cup \partial \theta_{f}=\partial L Q
$$

$\partial D_{u} \cap \partial D_{e}^{\prime}=b \longrightarrow$ at on pomit ae can spectly anly $1 B C$

$\partial \theta_{f}:\{0, \psi\}$
(2D) Balance law

$$
\int_{W} b \cdot n d s+\int_{W} p b d V=0
$$

dorgence theoren

$$
\int_{\omega} \nabla \cdot b d V+\int_{\text {localizatin prablem }} \operatorname{pbd} \cdot 0 \rightarrow \int_{\omega}(V \cdot b+\rho b) d V=0
$$

(3)

Can 1 sodve whis? N. ar need to close the spstion $\tau^{\prime l l}$ do this in 20
(3) $b=\left[\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right]=\left[\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{i 2}\end{array}\right]$

$$
\nabla \cdot b=\left[\begin{array}{l}
\sigma_{211} b_{12} \text { spn } \\
\sigma_{11,1}+b_{2,2} \\
\sigma_{121}+b_{22,2}
\end{array}\right) \quad p b=\frac{\left[\begin{array}{l}
p b_{1} \\
\rho_{2}
\end{array}\right]}{\sigma_{11}}
$$

$$
\nabla . b+\rho b=0 \longrightarrow \begin{aligned}
& \left.E_{q 1}\right)
\end{aligned} \left\lvert\, \begin{aligned}
& \sigma_{11}, 1+\sigma_{12,2}+\rho b_{1}=\delta \\
& \sigma_{12,1}+\sigma_{22,2}+\rho b_{2}=0
\end{aligned}\right.
$$

2 eqn's 3 unknouns $\quad \sigma_{11}, b_{12}, \sigma_{22} \quad \because$
\ldots-n L ie a linear function of stran.
$2 D \& 3 D$ is a linear function of stran

vagt stress noati Vorgt stiflems vaigt
I udded 3 more equatiny $2 D$ verien of 6.EE

I add 3 unknowns $\left(\epsilon_{11}, \epsilon_{22}, \epsilon_{12}\right)$

$$
\begin{aligned}
& \sum \longrightarrow \text { expresed } \text { in terins of } \\
& U=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right) \quad \overline{\bar{\varepsilon}}=\frac{\sqrt{u}+(\nabla u)}{2} \\
& \operatorname{sinin}_{\text {omprands }}^{\left[\begin{array}{ll}
\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{2,2}
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{ll}
u_{131} & u_{1,2} \\
u_{2,1} & u_{2,2}
\end{array}\right)+\left(\begin{array}{ll}
u_{1,1} & u_{2,1} \\
u_{1,2} & u_{2,2}
\end{array}\right)\right)} \\
& \epsilon_{12}^{\leftarrow} \begin{array}{cc}
\left(\begin{array}{cc}
\epsilon_{11} & \epsilon_{12} \\
\epsilon_{2} & \epsilon_{22}
\end{array}\right]=\left[\begin{array}{cc}
u_{1,1} & \frac{1}{2}\left(u_{1,2}+u_{21}\right) \\
\text { same } & u_{2,2}
\end{array}\right] \\
\epsilon_{11}=u_{11} & 1
\end{array} \\
& \text { Eq }{ }^{6} \text { EG1 }=u_{u_{1}} \\
& \text { e97 } \quad E_{22}=u_{n, 2} \\
& \text { E48 } \quad e_{12}=\frac{1}{2}\left(u_{12}+u_{2,1}\right) \\
& \text { independert stoan omproments }\left(\begin{array}{ll}
\varepsilon_{2,1} & u_{2,2}
\end{array}\right) \quad\left(\begin{array}{ll}
u_{1,1} & u_{2,1} \\
u_{1,2} & u_{2,2}
\end{array}\right) \\
& \text { Adiled } 3 \text { more equs } \\
& \text { All un knowns } \\
& 2=6,6,2
\end{aligned}
$$

A died 3 more equs
2), cnknarm ($\left.u_{19} u_{2}\right)$

$$
\begin{aligned}
& \sigma=\begin{array}{ll}
b_{11} & \sigma_{12} \\
\sigma_{12} & a_{22}
\end{array} \\
& E=\left[\begin{array}{ll}
\sigma_{11} & \epsilon_{12} \\
\sigma_{22} & \sigma_{22}
\end{array}\right. \\
& u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right.
\end{aligned}
$$

Summary

$$
\nabla \cdot b+p b=O \quad P D E
$$

Constirutive equ
$2+2=9$ ntim
Compatibitity

$$
C=\frac{1}{2}(\nabla u+\nabla u)^{\top}
$$

$\left.\begin{array}{r}\text { i, ii } \quad \nabla o b+\rho b=\nabla \cdot\binom{\sigma}{\alpha}+\rho b=O \\ \text { iii } \varepsilon=\frac{1}{2}\left(\nabla u+\nabla_{u}^{\top}\right)\end{array}\right\}$

2 equs

$$
\text { zunkanos }\binom{v_{1}}{u_{2}}
$$

2nd crobr differenilial equal.. 20 version of

Closing the system of equations (Statics)

Strong form (23) of balance of linear momentum for statics is:

$$
\begin{equation*}
\nabla \cdot(-\sigma)-\rho \mathbf{b}=\mathbf{0}, \quad \Rightarrow \nabla \cdot \sigma+\rho \mathbf{b}=\mathbf{0} \quad \Rightarrow \quad \sigma_{i j, j}+\rho b_{i}=0 \tag{24}
\end{equation*}
$$

where $\mathbf{f}=-\sigma, \mathbf{r}=\rho \mathbf{b}$, and $\nabla()=.\frac{\partial(.)}{\partial x_{1}}+\frac{\partial(.)}{\partial x_{2}}+\frac{\partial(.)}{\partial x_{3}}$.

Type	Equation	n_{e}	new unknowns	n_{u}	$N_{\mathrm{e}}-N_{\mathrm{u}}$
Balance law	$\sigma_{i j, j}+\rho b_{i}=0$	3	$\sigma_{i j}=\sigma_{j i}$, $i, j \in\{1,2,3\}$	6	3
Constitutive equation	$\sigma_{i j}=C_{i j k l} E_{k l}$	6	$E_{k l}=E_{l k}$	6	3
kinematic compatibility	$E_{k l}=\frac{1}{2}\left(u_{k, l}+u_{l, k}\right)$	6	u_{k}	3	0

$n_{\mathrm{e}}=$ number of new equations $\quad n_{u}=$ number of new unknowns
$N_{\mathrm{e}}=$ total number of equations $N_{\mathrm{u}}=$ total number of unknowns

- We need other equations (constitutive equations and kinematic compatibility equations) to balance the number of unknowns and equations.
- $L_{M}(\mathbf{u})=\mathbf{r}$ is the strong form after incorporating the "constitutive" and "compatibility" conditions.
- $L_{u}(\mathbf{u})=\overline{\mathbf{u}}$: Dirichlet BC , order M_{u}.
- $L_{f}(\mathbf{u})=\overline{\mathbf{f}}:$ Neumann BC, order M_{f}.
- \mathbf{u} is a primary field, (e.g., displacement for solid mechanics; temperature for heat conduction)
- M is typically even (e.g., $M=2 m$)

$27 / 456$

$$
\begin{aligned}
& \text { Next step }
\end{aligned}
$$

$\partial \mathcal{D}_{u}$	$\partial \mathcal{D}_{f}$
Dirichlet BC	Neumann BC
Essential BC (typically strongly enforced)	Natural BC ("naturally" derived from balance law fluxes)
"primary" or "kinematic" BC	"flux" or "force" BC

Slides 32 to 34 provide the formulation of the beam problem.
Ill cover it later, but it's good to read it and see how the
essential and natural BC are divided
essential and natural BCs are divided
WRS and Weak statement:
Weionned Residual Statemut (WRS)

Multiply by weights

$$
\int, 1 R \cdot d \backslash
$$

 $\left.f(w) R_{u}\right|_{x=0} \quad \omega \operatorname{Rf} E_{x=L}=0$

In continuous FEM (this course), Ill show that we don't have the middle term (integral of residual on essential BC)

$$
R_{u}: \bar{u}-u
$$

$$
\int_{0}^{L} w R_{i} d x+\left.w R_{f}\right|_{x=L}
$$

$=\int_{\alpha}^{\infty} \underset{0^{\text {th }} \text { abr }}{\infty}(\underbrace{\left(E A u^{\prime}\right)^{\prime}}_{=}+9) d x$

$$
\begin{aligned}
& +\left.w\left(\bar{F}-E A u^{\prime}\right)\right|_{x=L}=0 \\
& \int_{0}^{L} W^{\prime} V^{\prime} d x=\iint_{0}^{L}\left(N^{\prime}-\omega^{\prime} V^{\prime}\right) \\
& =\left.W\right|_{0} ^{L}-\int\left(U^{\prime}\right)^{2} d x
\end{aligned}
$$

$\int_{0}^{L} \underbrace{w}_{-\rightarrow}(\underbrace{\left(E A u^{\prime}\right)^{\prime}} d x$
$J V V \backsim V A i^{\prime}$
$=\left.w E A u^{\prime}\right|_{0} ^{L}-\int \begin{aligned} & \left(w^{\prime} E A u^{\prime}\right) d x \\ & V^{\prime} 乌^{2}\end{aligned}$

$$
\int_{0}^{L} \omega \underbrace{\left(E A u^{\prime}\right)^{\prime} d x}=\left.w E A u^{\prime}\right|_{x=L}-\left.w E A u^{\prime}\right|_{x=0}-\int_{0}^{L} \omega^{\prime} E A u^{\prime} d x
$$

$$
\int_{0}^{L} \int_{0}^{L} \int^{0} E \frac{\left.A u^{\prime}\right)^{\prime} f d x}{2 d r i v a t i e s t}+
$$

-

$$
w\left(\bar{F}-\left.E A u^{\prime}\right|_{x=L}=\gamma \quad W R \rho\right.
$$

such that for all $w(x) \in W)=\{f \in C(D) \mid=\}$
we have

$$
\begin{aligned}
& \text { othorer }
\end{aligned}
$$

(A) Because we did not add weight time residual essential $_{\text {bound an }}$ boundary to the WRS

Weak statement
such that for all weigh function wE Ni: $\left\{f C^{\prime}(D) \mid f(0)=\square\right\}$

$$
\int_{0}^{L} w^{\prime} E A U d x=\int_{\substack{u=\bar{u}}}^{L} w q d x+\left.w \bar{F}\right|_{x=L}
$$

Key points for the weak statement:

- Derivative orders are balanced for weight and solution
- Both w and u satisfy the essential BC.
- For solution the actual essential BC
- For the weight, the homogenous (e.g. 0) version of that.

2D examples:

1. Elastostatics (in class)
2. Heat conduction (HW2)

$$
R_{i}: \forall x<\mathcal{L}
$$

$$
R_{i}=\nabla \cdot b+p b
$$

$$
R_{f}: \forall x E \partial_{f} O_{f}
$$

we strongly satisfy
suchtwe \forall we $\gamma=\left\{f \in C^{\sigma}(g)\right\}$

The process of deriving the weak statement

$$
\int_{P} \omega(\nabla \cdot b+p b) d V+\int_{\left(B A u^{\prime}\right)^{d}} \omega(\omega(\bar{t}-\sigma \cdot n) d S=0
$$

$$
\begin{aligned}
& \int_{\rho} \omega(\underbrace{(D \cdot \sigma}_{2}) d v \\
& \lambda_{2} \text { dervation for } \Delta
\end{aligned}
$$

2D versicio of IBP

wes $\int_{D} \frac{b}{\omega\left(T_{0} \delta\right) d v}+\int_{D} \omega(\rho b) d V+\int_{\partial D_{f}} \omega\left(E-\sigma_{0} n\right) d s$

$$
=\int_{\partial D_{n} b} 6 \cdot n d s
$$

The process of deriving the weak statement

$$
T \int_{\partial D} w \bar{t} d s \quad-\int_{\partial D}^{u} w 6 \cdot 1 d s=0 \quad \text { now we this }
$$

We will choose weight functions that are zero on Essential BC $\forall_{x} \in D_{n} d(x)=0$

$$
\bar{o}(u)=C \varepsilon(u)
$$

weak statement $\rightarrow \mathcal{E}(\omega)$

$$
\int(\sqrt{v} \cdot) C \varepsilon(u) d V=\int \omega p b d V+\int \omega F d s
$$

$$
\begin{aligned}
& \int_{\mathcal{D}}\left(\bar{\nabla}^{\prime} w \cdot C \varepsilon(u) d V=\int_{\mathcal{S}} \omega \rho b d V+\int_{\partial O_{f}} \omega \tau d s\right. \\
& \varepsilon(u)=\frac{\nabla u+\nabla_{u}^{\top}}{2} \\
& \varepsilon(w)=\frac{\nabla_{w}+\nabla_{w}^{\top}}{2}
\end{aligned}
$$

$\varepsilon(u)=\frac{\nabla u+\nabla_{u}^{\top}}{2}$
$\varepsilon \varepsilon(w)=\frac{\nabla w+\nabla_{w}^{\top}}{2} \nabla \cdot(\underbrace{\frac{\nabla w}{2}}_{\varepsilon(w)}) . C \varepsilon(u)$
Final form of the creak statement:

Compare this with the WRS:

The Weighted Residual Statement reads as,
Find $\mathbf{u} \in \mathcal{V}^{\mathrm{WRS}}=\left\{\mathbf{v} \in\left\{\mathcal{C}^{2}(\mathbb{D}) \mid \forall \mathbf{x} \in \partial \mathcal{D}_{u} \mathbf{v}(\mathbf{x})=\overline{\mathbf{u}}\right\}\right.$, such that,
$\forall w \in \mathcal{W}^{\mathrm{WRS}}=\mathcal{D}$) no need to enforce the homogeneous essential BCs for WRS
$0=\iint_{0}^{\mathrm{w}} \cdot(\underbrace{\nabla \cdot \sigma}_{i k l u_{k, y}}+\rho \mathbf{b}) \mathrm{dv}+\int_{\partial \mathcal{D}_{f}} \mathrm{w} \cdot(\overline{\mathbf{t}}-\mathbf{t}) \mathrm{ds}$

Q: distinction between weak and strong

Strong -> the equation is satisfied at all points
Weak -> the equation is satisfied in "integral" form, where a weight function multiplies the equation

FM
Specific meaning of weak statement -> The great looking :) equation we get after "integtration by part" of the WRS
we decade to
satisfy the last term strongly

Weak statement is much better than WRS because the solution and the weight have the same regularity requirement and this enables continuous FE formulation.

A brief note on how to satisfy the essential boundary condition for the solution and the homogeneous version of that for the weight when dealing with the Weak Statement.

ID Example
the exact sold i
$U(x) \rightarrow$ is diseretized to
$\cdots(x) \quad \rightarrow$ is diseretred to

n unknowns
dosperiod

$$
\ln ^{d}(X)=\sum_{i=1}^{n}
$$

$$
\underbrace{\phi_{i}(x) a_{i}}_{i}+\phi_{p}(x)
$$

Motival : frin DE we choose

We do the same trick to satisfy the essential $B C$ s
dagetiod

$$
\partial \perp g_{u}: \quad x=0
$$ we choose

$$
\begin{array}{r}
\oiint_{p}(x=0)=\bar{u} \\
\forall: 1,-n P_{i}(x=0<0
\end{array}
$$

$$
u^{n}(x=0)=\sum_{i=1}^{n} \phi_{1}(x=0) a_{i}+\phi_{p}(0)
$$

Examples $\rho \phi_{p}$: d. <1

$$
\begin{aligned}
& \ell^{h}(x)=\sum_{i=1}^{n} \underbrace{\phi_{i}(x) a_{i}}_{\substack{b_{i} \\
\text { the fundiois unknowns }}}+\psi_{p}(x) \\
& \text { the fundions }
\end{aligned}
$$

$$
\begin{aligned}
& x+5 x=10 \\
& x(0)=0 \\
& x_{p}(t)=\frac{10}{5}: 2 \\
& \text { satistins non-homegeneos } \\
& \neq 0 \\
& x=\phi_{p}\left(a_{1}+\phi_{p}(t)\right. \\
& \stackrel{\Phi_{1}(t)=C^{-5 t}}{\text { habrageneas } D E} \rightarrow \text { satisin } \\
& \dot{a}_{p}+5 p_{p}-10 \\
& \dot{x}+5 x=\frac{10}{\left(\phi_{p}+5 \phi_{p}\right)}+\left(\underset{\dot{\phi}_{1}+5 \phi_{1}}{0} a_{1}=10\right. \\
& \text { Q } 5 \phi_{1}=0
\end{aligned}
$$

Examples $\rho \phi_{p}: \phi_{p}<1$

I can choose $\quad \phi_{1}=x \quad \phi_{2}=\sin x$
$\phi_{p}=1$

$$
u^{h}=\phi_{1} a_{1}-\phi_{2} a_{2}+\phi_{p}=a_{1} x+a_{2} \sin x+1 \text { this } \operatorname{san} 1 s_{1} i_{1}
$$ essentid BC a prior.

since ϕ_{i}^{\prime} 's are already zero on Essential BC they con readily be used as weight functions in leak stademand.

$J \frac{w^{*-} \mid}{\text { bad }}$
Use $\int_{D} \underbrace{w \nabla \cdot g}_{\text {bad }} d V=\int_{V Q} \nabla \cdot(w q) d V \cdot \int_{O} \nabla \cdot g d U=$

$$
\int_{\partial \Delta}^{\square} w q \cdot n d s-\int \nabla w \cdot q d v
$$

$$
T(x)=\underset{\text { mass }}{m} g h(x)
$$

unstable (cal max
stable: local min $\frac{\partial \pi}{\partial x}<0$
Stable solution \longrightarrow Ex we want to find a local minimum Dower system $A E x 1$
Equilibrium $\frac{d \pi}{d x}=0 \quad \pi$ is an extremum (min or mail)

$$
\frac{d \pi}{d x}>0 \ldots
$$

\qquad

$T=V^{2}-W_{\Delta}$ external work

$$
\begin{array}{ll}
V=\frac{k}{2} r^{2}+\frac{k_{2} r^{2}}{2} & W=P r \\
T(r)=\frac{k_{1} r^{2}+k_{2} r^{2}}{2}-P r
\end{array}
$$

$1 \pi \quad, \quad \cdots \quad \lambda$ equilibrium
P

$$
\begin{aligned}
& \frac{d \pi}{d r}=\left(k_{1}+k_{2}\right) r-P=0^{\text {equilibrium }} \\
& \frac{d^{2} \pi}{d r^{2}}=k_{1}+k_{2} \ggg \text { local minimum }
\end{aligned}
$$

$$
r=\frac{p}{k_{1} \& k_{\imath}}
$$

mallees astr force epproces
stable equilibrium

Continuum version

Energy Method for Solid Mechanics
The total energy in solid mechanics is,

- For static problems $T=0$.
- Internal energy density, $e(\epsilon)=\frac{1}{2} \epsilon: \sigma(\epsilon)=\frac{1}{2} C_{i j k l} \epsilon_{i j} \epsilon_{k l}$ for linear solid.
- Natural boundary forces are naturally incorporated into the energy (W_{f}).
- Essential boundary conditions are incorporated into function space:

$$
\mathbf{u} \in \mathcal{V}=\left\{\mathbf{v} \mid \mathbf{v} \in C^{1}(\mathcal{D}): \forall \mathbf{x} \in \partial \mathcal{D}_{u} \mathbf{v}(\mathbf{x})=\overline{\mathbf{u}}(\mathbf{x})\right\} \text {, is a solution if }
$$

$$
\forall \tilde{\mathbf{u}} \in \mathcal{V}, \quad \Pi(\mathbf{u}) \leq \Pi(\tilde{\mathbf{u}})
$$

$1 D$
 \checkmark indrnal energy dustily 2D,3D lines eesticaty

$$
\frac{1}{2} \varepsilon: \sigma=\frac{1}{2} \varepsilon_{1} C_{i}: \varepsilon
$$

For the problems well do (static) $T=0$
Derive the energy statement for a bar

$\bar{u}=\bar{u}$

$$
\begin{align*}
& =\frac{1}{2} \int_{0}^{L} E(x) A(x) \varepsilon^{2} d x \\
& \bar{V}=\frac{1}{2} \int E A(x) u^{\prime}(x) d x
\end{align*}
$$

$$
\varepsilon \cdot \frac{d u}{d x}:=u^{\prime}
$$

A function of a function is called a functional.

1. Useful links for energy method (not necessary to apply energy approach in the derivation of weak statement) - link Functional optimization: How an equation for
first variation of a functional (e.g. equations 93,95 on slide 78) can be derived. You clearly do not need to read this document for this course and this is only provided as a related material for students that want to understand the logic behind the derivation of equations 93, 95. - Link Exact calculation of total, first, and second variations for a simple example: In this document the total variation of the energy functional for the bar problem is directly calculated. The first and second variations are directly obtained and higher variations are zero for this simple functional. It is observed that the first variation is exactly the same as what we would have obtained by equation 96 on slide 78 .

From the last time, we had the potential energy statement for the bar problem shown:

1) Look for minimum potential energy condition.
2) How the essential boundary condition is treated

Let u be the exact solution, that is it minimizes Π

Let $u_{1}(x)$ be another "trial function"

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{L} E A u^{R} d x-\int_{0}^{L} u(x) q(x) d x-u(L) \bar{F} \\
& +\left(\int_{0}^{L} E A \delta u_{1}^{\prime}(x) u^{\prime}(x)-\int_{0}^{L} \delta u_{1}(x) q(x) d x-\delta u_{1}(L) \bar{F}\right) \\
& +\frac{1}{2} \int E_{A}\left(\delta u_{1}\right)^{2} d x \\
& \pi\left(u, u^{\prime}\right) \\
& \text { in } \delta n \\
& \delta^{2} \pi \rightarrow \text { ind ordr } \\
& \text { terms in Sa }
\end{aligned}
$$

Summay

$$
\begin{aligned}
& \Pi\left(u_{1}, u_{1}^{\prime}\right)=\pi(u, \delta u)+\delta \pi+\delta^{2} \Pi_{1}+\ldots \\
& \pi(u, \delta u)=\frac{1}{2} \int_{0}^{E} E u^{2} d x-\int_{0}^{L} u(x) q(x) d x-u(L) \bar{F} \quad \begin{array}{l}
\delta u \rightarrow-\delta u \\
\delta \pi \rightarrow-\delta \pi
\end{array} \\
& \delta \Pi=\int_{0}^{y} \delta u^{0}=A u^{\prime} d x-\int_{0}^{4}(s u q g d x \\
& \delta^{2} \pi=\int_{0}^{1} \frac{1}{2} E A\left(S \sigma^{\prime}\right)^{2} d x>0 \\
& \Pi\left(u_{1}, u_{1}\right) \geq \Pi(u, \delta u) \\
& f\left(x_{1}\right)=f\left(x^{n}+\Delta x\right)=f\left(x^{n}\right)+\Delta x f^{\prime}\left(x^{n}\right)+\frac{1}{2} \Delta^{2} x^{2} f^{\prime}\left(x^{n}\right) \\
& +\cdots \text { Hot } \\
& 0 \leqslant f(x)-f\left(x^{*}\right)=\underbrace{\Delta x f^{\prime}\left(x^{*}\right)}_{\delta^{\prime} f<0}+\underbrace{\frac{1}{2} \Delta x^{2} f^{\prime \prime}\left(x^{*}\right)}_{\delta^{2} f \geq 0} \\
& f^{\prime} f^{\prime}\left(x^{0} y^{0}|\quad| \quad \begin{array}{l}
x \\
a^{\prime}\left(x^{*}\right)
\end{array}\right)
\end{aligned}
$$

i) $f^{\prime}\left(x^{\prime}\right)=0 \quad$ why after knowing $f^{\prime}(x)<0$
ii)

$$
0 \leq f(x)-f\left(x^{0}\right)=\underbrace{\frac{1}{2} \Delta x^{2} f^{\prime \prime}\left(x^{0}\right)}_{20} \equiv f^{\prime \prime}\left(v^{\prime}\right) \geq 0
$$

For function x^{*} mimimien $f \rightarrow \delta f\left(x^{*}\right)=\Delta x f^{\prime}\left(x^{0}\right)=0 \quad \equiv f^{\prime}\left(x^{\prime}\right)=0$

$$
\delta^{2} f\left(x^{0}\right)>0 \quad \equiv f^{\prime \prime}\left(x^{0}\right)>0
$$

note $f S^{2} f=0$ we need to bork (a) higher aider derivations

Similar to functions of real variable above, if a functional is mimimized for solution u, we have the following conditions:

$$
\begin{aligned}
& \Pi\left(u_{1}, u_{1}^{\prime}\right)=\Pi\left(u+\delta u_{1}, u^{\prime} \delta u_{1}^{\prime}\right)=\Pi\left(u, u^{\prime}\right)+\delta \Pi_{+} \delta^{2} \Pi_{+} \ldots \\
& \delta \Pi=\bigcirc \quad \text { minimum condition for fondiad) }
\end{aligned}
$$

here $\delta \pi=\int_{0}^{L} \delta^{\prime} u(x) E A(x) u^{\prime}(x) d x-\int_{0}^{L} \delta u(x) q(x) d x-\delta u(L) F=0$

$$
\delta^{2} \pi=\int_{0}^{L} \frac{1}{2} E A(x)\left(\delta^{\prime} u\right)^{2} d x>0
$$

this is already satisfied
b so we only need to worry about this one.

Recall the waal statement

$$
\left.\int_{0}^{L} \omega^{\prime}(x) E A u(x) d x \quad=\int_{0}^{L} \omega(x) q(x) d x \quad f(1) L\right) \bar{F}
$$

Recall: In the derivation of the weak statement (from WRS) we needed the weight function to be ZERO AT ALL ESSENTIAL BC

Do we have the same condition here?

$$
\begin{aligned}
& \delta u=w \\
& w=0 \operatorname{cu} \gamma D_{u}
\end{aligned}
$$

Do we need $\quad \operatorname{Su}\left(\partial_{2}\right)=0$

In energy methods, ALL TRIAL FUNCTIONS must satisfy the ESSENTIAL BC (hence the name)

$$
\begin{aligned}
& \left.\begin{array}{l}
u_{1}(x=0)-\bar{u} \\
u(x-c)-\bar{u}
\end{array}\right\} \rightarrow \delta u_{1}(x=0)=u_{1}(x=0)-u(x=0) \\
& \delta u=0 \text { on } \partial D_{u}
\end{aligned}
$$

Why we must satisfy essential x b?

$$
\begin{aligned}
& \partial D_{n}:\{0,4\} \\
& \text { For the exact solon } u^{\prime}=2=\left(\frac{U}{L}\right) \\
& \partial \rho_{\rho}=\phi
\end{aligned}
$$

$$
\pi\left(u, u^{\prime}\right)=\int_{0}^{L} \frac{1}{2} E A\left(\frac{\mathbb{U}}{L}\right)^{2} d x=\frac{E A \bar{u}^{2}}{2^{L}}
$$

energy of the exact slut:
How abas trial function $U_{1}=0$

$$
\left.\pi\left(u_{1}, u_{1}^{\prime}\right)=0<\pi\left(u_{1}, u_{1}^{\prime}\right)<u^{1}, u^{\prime}\right)
$$

another fore:
It must lure been

The problem here is that $\mathbf{u 1}$ is not acceptable.
Acceptable trial functions MUST satisfy all essential BCs. Otherwise the exact solution does not minimize the potential energy.
For this problem there are two essential B as sunder
$u(0)=0$
URL) $\cdot \bar{l}$

Summary:
For this problem

For this problem

$$
\delta \pi=\int_{\sigma}^{L} \delta u E A u d x
$$

and $S_{u}(0)=0$

(because brat funarius satisfy essential $B C \rightarrow \delta u c 0$ on ∂D_{n} l

Replace $\mathrm{Su} \rightarrow \mathrm{w}$
Find $u \in \gamma=\left\{f_{E}(V([0, \mu)) \quad f(\delta)=\vec{u}\right.$ such that $\forall w \in D=\left\{f \in C([0, L] \mid \quad f(0)=0 \quad\}^{\text {anurendut is wo so }}\right.$

$$
\int_{c}^{L} \frac{W^{\prime}(x)}{(\delta u)^{\prime}} E A u^{\prime}(x) d x=\int_{0}^{L} \frac{w(x)}{\delta u} q(x) d x+\underbrace{W(L)}_{\delta u} \bar{F}
$$

Automated way of calculating the first increment $->$ So we can easily calculate it and find the weak statement.
$f(x+\Delta x, d y)$

$$
\underbrace{\Delta f}_{\text {fora interment }}=f(x+\Delta x, y+\Delta y)-f(x, y)
$$

$$
\begin{aligned}
& =\underbrace{\left(\frac{f}{\partial x} \Delta x+b_{y} \Delta y\right)}_{\delta f} \\
& +\underbrace{(\underbrace{\frac{1}{2} f_{2 x x} \Delta x}_{\text {tessin thin }}+f_{s}}_{\delta^{2} f} \quad
\end{aligned}
$$

$$
:_{\partial x}=\frac{\partial f}{\partial x}
$$

1D version of this from slide 76

First variation of a function / extremum condition

Let $f(x)$ be a function from $\mathbb{R} \rightarrow \mathbb{R}(\mathbb{R}$ is the real number set). We are interested in finding the increment to the function value due to change in the function argument x_{0} :

$$
x_{0} \rightarrow x_{0}+\Delta x: f\left(x_{0}\right) \rightarrow ?
$$

We adopt the following definitions:

- Total variation: $\Delta f\left(x_{0}, \Delta x\right)=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)$
- First variation: $\delta f\left(x_{0}, \Delta x\right)=\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{0}\right) \Delta x$

We often drop the arguments x_{0} and Δx as shown. For a differentiable function we expect:

$$
\Delta f \approx \delta f \text { for "small" }|\Delta x|
$$

$$
\begin{aligned}
& \delta f=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{v y} \Delta y \\
& f(x, y) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial y^{\prime}}{\partial y}=2 y \\
& \int_{\frac{1}{2}} \operatorname{ED}\left(2 u^{\prime} u^{\prime}\right) \\
& =\int_{0}^{L} E A u^{\prime} \delta u^{\prime}-\int_{0}^{L} \delta u g d x-\operatorname{suc}() \vec{F}=0
\end{aligned}
$$

