Last time we obtained K, Fr, FN, FD for general Galerkin methods. We want to specialize those to FENs, using FEM basis functions N
A. Stiffness matrix

dispacement $W^{h}(x)$ at a given posini x.

$$
U^{h^{\prime}}(x)=\Sigma(x)=[N_{1}^{\prime}(x) \ldots N_{n f}^{\prime}(x) \underbrace{\left[\begin{array}{l}
a_{1} \\
\left.\right|_{a_{n}}
\end{array}\right](\text { nodal displacenvends) })}_{\text {this vector maps }\left[\left.\begin{array}{l}
a_{1} \\
1 \\
\vdots \\
a_{n}
\end{array} \right\rvert\,\right.}
$$

positar x, strain
$B(x)=\left[\begin{array}{lll}N_{1}^{\prime}(x) & N_{2}^{\prime}(x) \cdots & N_{n f}^{\prime}(x)\end{array}\right]$
is called displacement to strain map

$$
\begin{aligned}
& \int_{b}^{\omega^{\prime} E A} u_{D}^{\prime} d x \\
& \mathcal{L}_{m}(\omega)
\end{aligned}
$$

bor problem

$$
\begin{aligned}
& D=E A \\
& B=N N^{\prime} \\
& B=h_{m}(N)
\end{aligned}
$$

cher examples

$$
=[\ldots \sqrt{T y}
$$

iv Deam
$\int_{1} w^{\prime \prime E I^{2} y^{2}} d x$

$$
\mathcal{L}_{m}=()^{\nu}
$$

$B=f_{m} N \cdot N^{\prime}$
2D,3D heat condachi

$$
\int_{D \mathcal{L}_{w} w} \nabla w \pi T d x
$$

2DFD solid rechamici

$$
\int_{\mathcal{L}_{w} \frac{\nabla+v^{\top}}{2}}^{\varepsilon(w)} C \Sigma(u) d v
$$

$$
B=f_{m} N=\varepsilon\left(N \left\lvert\, \Rightarrow \frac{\nabla N+\nabla^{\top} N}{2}\right.\right.
$$

For FEM K is

$$
K=\int B^{+} D B d V
$$

poeviarsly we used

FEM pravides a general means to form $p p$

$$
\phi_{p}=\bar{U} \quad N_{-}(x)
$$

Jalve@1st presenbed dd

satshis all essectol
 BCs -
区u_ - 10 from $2 D$

BC s -

Example from 20 Heat conduction
$\mathrm{F}_{1}(x)$
takes the valve?
a) node $\overline{9}$ \& zero at over nodes

$$
=a_{T}
$$

The particular solution we form this way satisfies the essential BC on ALL prescribed dofs (node here).
However, it may not match the exact Tbar between the nodes if Thar is not linear between the nodes.

Is this a problem?

Discretization (infinite unknown -> finite unknowns)
results in error

$$
\begin{aligned}
& U^{n}=\alpha_{p}+\sum_{i=1}^{n} N_{i}(x) q_{i} \\
& 11 u^{h}-u^{\text {exam }} \| \propto h^{p+1} \text { element }
\end{aligned}
$$

Any other source of error in calculating K and F in $\mathrm{Ka}=\mathrm{F}$ that DOES not dominate discretization error is perfectly fine, because the error still behaves as

$$
C h^{P+1}
$$

Some examples:

- not satisfied essential BC between nodes
- Approximate sources term
- Numerical integration (quadrature)

Summary:
$u^{h}(x)=g_{p}(x)+\sum_{i=1}^{n_{p}} a_{i} N_{i}(x)$ $\left[\begin{array}{l}a \\ 1\end{array}\right]$

$$
\begin{aligned}
& =\sum_{i=1}^{n_{p}} a_{i}-N_{i}(x)+\left[\begin{array}{lll}
N_{1} & \cdots N_{n_{p}}
\end{array}\left[\begin{array}{l}
a_{1} \\
i \\
1 \\
a_{n p}
\end{array}\right]\right. \\
& n_{n_{p}-4}^{\left.n_{f}=6\right]_{1}^{n_{1}}} \\
& =C N_{i}(x) \cdots-N_{N_{p}}(x)\left[\begin{array}{l}
a_{T} \\
1 \\
1 \\
i
\end{array}\right]+\left[N_{1} \cdots N_{n 1}\left[\begin{array}{l}
a_{1} \\
1
\end{array}\right] \quad \nabla T_{1} B_{p} a_{p}+B_{p} a_{p}\right. \\
& u^{h}=\underset{\text { Dp }}{\sqrt{N} \bar{a}}+N a \\
& \varepsilon(x)=\bar{N}^{\prime} \bar{a}+N_{a}^{\prime} \\
& =\sum_{\text {displacement to }}^{\bar{B} a}+\frac{B a}{} \text { displacement to stroin map } \\
& \text { stroci map } \\
& \text { for free dafs } \\
& \text { for presanbed deds }
\end{aligned}
$$

ako noded os

$$
\text { Bpap }+B_{f} a_{f}
$$

Still don't have the formula for \bar{F}_{D}

$$
\begin{aligned}
& F_{p=} \int_{\alpha} B_{p}^{t} D \mathcal{L}_{m}(\underbrace{\sum_{i \in l}^{n_{i}} a_{i}^{-} N_{i}}_{\sum_{i \in l}}) d v \\
& \begin{array}{l}
\begin{array}{l}
b \times h_{\text {m }}=()^{\prime} \\
B=N^{\prime}
\end{array}
\end{array} \\
& =\int_{\infty} B_{f}^{t} D \sum_{i=1}^{n P} a_{i}^{-} \operatorname{L}_{m}\left(N_{i}^{-}\right) d v \\
& =\int_{D}^{\infty} B_{p}^{t} D \underbrace{\left[L_{m}\left(N_{-}\right) \cdots \alpha_{m}\left(N_{n_{p}}\right)\right.}_{B_{p}} \underbrace{\left[\begin{array}{c}
a_{i} \\
\vdots \\
a_{r_{p}}
\end{array}\right]}_{a_{p}} d v \\
& \text { because Lum is lieear }
\end{aligned}
$$

up

Compare this with

$$
\begin{align*}
K=K_{f f} & =\int_{D_{1}}\left[\left.\right|_{B_{f}} ^{B_{1}}\right] D\left[B_{1} \cdots B_{n f}\right] d v \tag{2}\\
& =\int_{D} B_{f}^{t} D B_{p} d v
\end{align*}
$$

Calculation of FD is similar to K ($=\mathrm{Kff}$) with the difference that we calculate Kip and next multiply it by ap

Bor problem examples
C. Source term force

1 Salice iemm

$$
F_{2} \delta\left(x-x_{2}\right)+F_{3} \delta\left(x-x_{3}\right)+F_{4} \delta\left(x-x_{4}\right)
$$

Deltew-Dirac funchi (wre dixussed thii colloak.
From er(3) $\left(F_{\sigma}\right)_{I}=\int_{0}^{h} N_{\Gamma}(x) q(x) d x=$ thii calcolod?
melod

$$
=F_{I}
$$

$$
\frac{\left.\sqrt{F_{r}}\right)_{I}=F_{J}}{f_{5}}
$$

we denate the force from from on centrated force 8 the formila is

$$
F_{n}=\left|\begin{array}{l}
F_{1} \\
F_{2} \\
1 \\
1
\end{array}\right|
$$

(4)

$$
\begin{aligned}
& \int_{0}^{L} N_{I}(x)\left(F_{1} \delta\left(x-x_{1}\right)+\cdots+F_{n_{f}} \delta\left(x-x_{f}\right)\right) d x \\
& =\sum_{J=1}^{n_{f}} \int_{0}^{L} \int_{f}^{E_{J} N_{I}(x)} \delta\left(x-x_{j}\right) d x \\
& =\sum_{J=1}^{n_{f}} \underbrace{F_{j} N_{I}\left(x_{j}\right)}_{=\frac{1}{0}} \\
& \text { if } J=\vec{J} \\
& \text { otherwise }
\end{aligned}
$$

Example 2
heat conduch.

$$
\nabla \circ 9+\square=0
$$

source $=$ heat source
F_{1} - $F_{n p}$ are onontrated and are scalar heal sources Example idealizing lead source from a lager
D. $F N=$ the force from natural boundary condition

for $2 D$ hear equate $\bar{F}_{2} \bar{q}=$ net heal flux

$$
F_{N}=\int_{W_{D}} \int_{N_{p}}^{N_{1}} \vdots_{N_{F}} \mid \bar{q} d s
$$

Example 2: PD bar

$$
F_{N}=\int_{\partial D_{p}}\left[\left.\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3} \\
N_{4}
\end{array} \right\rvert\, F d s\right.
$$

$$
\begin{array}{cc}
\partial D_{f} \\
\left.\lambda 1 b_{0}\right) x i & F=\left[\left.\begin{array}{l}
N_{1}\left(\alpha_{4}\right) \\
n_{1}(\ldots .)
\end{array} \right\rvert\, r \quad\left[\left.\begin{array}{l}
0 \\
0
\end{array} \right\rvert\,, \quad \Gamma 0\right.\right.
\end{array}
$$

$$
\begin{array}{ll}
\begin{array}{cc}
\partial D_{p} & \mathcal{F}_{f} \cdot 2 x_{4} y
\end{array} & \stackrel{F_{N}}{N}=\left[\begin{array}{l}
N_{1}\left(\alpha_{+}+1\right. \\
N_{2}\left(\alpha_{4}\right) \\
N_{3}\left(x_{4}\right) \\
N_{4}\left(x_{4}\right)
\end{array}\right] F_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] F_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
F_{4}
\end{array}\right] \\
N_{s o} & F_{n}=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right] \quad K a=F=F_{r}+F_{n}+F_{N}-F_{D}
\end{array}
$$

F_{4} is dabs counted, case need to ouster F_{4} cither os a nodal force or natural baxinimy conduit

When dealing with 1D elements, we never calculate FN

foams

$\mathbf{F}_{r}, \mathbf{F}_{N}, \mathbf{F}_{n}$ and \mathbf{F}_{D} are given by (cf. (301) and (310))

$$
\begin{align*}
& \mathbf{F}_{r}=\left(\mathbf{N}^{\mathrm{T}}, q\right)_{r}=\int_{\mathcal{D}} \mathbf{N}^{\mathrm{T}} q \mathrm{dv}=\int_{0}^{L}\left[\begin{array}{c}
N_{1} \\
\vdots \\
N_{n_{\mathrm{f}}}
\end{array}\right] q \mathrm{~d} x \\
& \mathbf{F}_{N}=\left(\mathbf{N}^{\mathrm{T}}, F\right)_{N}=\int_{\partial \mathcal{D}_{f}} \mathbf{N}^{\mathrm{T}} \mathbf{F} \cdot \mathbf{N} \mathrm{ds}=\left(\left[\begin{array}{c}
N_{1} \\
\vdots \\
N_{n_{\mathrm{f}}}
\end{array}\right] F\right)_{x=L} \\
& \mathbf{F}_{D}=\mathcal{A}\left(\mathbf{N}^{\mathrm{T}}, \phi_{p}\right)=\int_{\mathcal{D}} \frac{\mathrm{d}}{\mathrm{~d} x} \mathbf{N}^{\mathrm{T}} E A \frac{\mathrm{~d}}{\mathrm{~d} x} \phi_{p} \mathrm{dv} \tag{312c}\\
& =\left\{\int_{\mathcal{D}} \mathbf{B}^{\mathrm{T}} E A \overline{\mathbf{B}} \mathrm{dv}\right\} \overline{\mathbf{a}}=\left\{\int_{0}^{L}\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n_{f}}
\end{array}\right] E A\left[\begin{array}{lll}
\bar{B}_{\overline{1}} & \cdots & \bar{B}_{n_{\mathrm{p}}}
\end{array}\right] \mathrm{d} x\right\}\left[\begin{array}{c}
\bar{a}_{\overline{1}} \\
\vdots \\
\bar{a}_{n_{\mathrm{p}}}
\end{array}\right]=\mathrm{K}_{f_{p}} \overline{\overline{\mathrm{a}}} \\
& \mathbf{F}_{n}=\left[\begin{array}{c}
F_{n 1} \\
\vdots \\
F_{n n_{f}}
\end{array}\right]
\end{align*}
$$

For next time:

Bar Example: Overview

