Trusses

- Trusses are 2D or 3D ensemble of bars.
- The main load transfer mechanism of these bars is axial force as the hinge connection at nodes prevent generation and transfer of moments.
- Although in bar elements we could have body force, in trusses we do not apply any type of load between the nodes (except the weight of bars themselves which may be neglected in many applications).
- Generally, top and bottom bars carry the moments and middle diagonal and vertical bars carry shear forces if we think of truss as a big bar.
- key idea

Gool: $\left.F:()_{R=1}\right) \cup$
(1) (2) $\quad f=(k T V U) \cup(3)$

$$
\begin{equation*}
\bar{F}=F_{4_{x 1}} f_{4_{21}} \tag{4}
\end{equation*}
$$

if we find Tf
siffluess madni
in globerl coordinate
permutiply (3) by $T_{F f}$.

$$
\begin{equation*}
F_{4 \times 4}=T_{F f_{4 \times 2}} K_{2 \times 2} T_{v U_{2 \times 4}} \tag{5}
\end{equation*}
$$

All we need now is calcalating $\left.T_{u}\right) \& T_{\text {Ff }}$

$$
\left.\begin{array}{l}
C=\cos \theta, s=\sin \theta \\
T u \\
T_{u}
\end{array}\right]=\begin{array}{ll|l|l|l}
u_{1} \\
u_{2} & s & 0 & 0 \\
\hline U_{1} & 0 & c & s \\
U_{4} & 0 & 0 \\
U_{3} & 0 \\
0
\end{array}
$$

the rostt is column 1 of the madre

column $1 \quad U_{1}=1, V_{2}=0, U_{3}=0 \quad U_{4}=0$

$$
\begin{aligned}
& U_{1}=\cos \theta=c \\
& U_{2}=0 \\
& \text { colvm } 2 \quad U_{2}=0 \quad U_{2}=1 \quad U_{3}=0 \quad U_{4}=0 \\
& U_{1}=\sin \theta=s \quad U_{2}=0
\end{aligned}
$$

$$
v_{1}=\sin t \Rightarrow \quad U_{2}=v
$$

$U_{n}=\int_{1} f_{8} u_{1}$
Calcelading

$$
f_{i}=1 \quad F_{i=} \cos \theta
$$

$$
f_{2}=0 \quad f_{2}=\sin \theta
$$

$$
F_{3}=F_{4}=0
$$

necall $T: T_{0} U=\left[\begin{array}{ll|l}c & S & 0 \\ c & 0 & 0 \\ 0 & s\end{array}\right]$

(I) $=\frac{A E}{L}$

$$
K_{b}=[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array} \underbrace{}_{2}
$$

$$
\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=k T T_{0} U\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ccccc}
c & s & 0 & 0 \\
0 & 0 & c & 5
\end{array}\right]\left[\begin{array}{l}
U \\
U_{2}=T \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]
$$

$$
\begin{aligned}
& T=f=\frac{A E}{L}\left(c\left(U_{3}-U_{1}\right)+s\left(U_{4}-\left(U_{2}\right)\right)\right. \\
& \text { al al force }
\end{aligned}
$$

(I) axial force

$$
\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\bar{k}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

needed this for ID

$$
{\underset{2}{ }{ }^{\top} \overrightarrow{v_{1}} \overrightarrow{F_{1}}}_{\overrightarrow{F_{1}}}
$$

$$
\left.\begin{array}{c}
F E M \\
{\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3} \\
F_{2}
\end{array}\right] \cdot-\left[\begin{array}{c}
k_{b} \\
\hline
\end{array}-\frac{k_{b}}{}\right.} \\
\left.\hline-k_{b}\right] k_{b}
\end{array}\right]
$$

There are cases thad the two sides of the elemnitt don't have the same coordinate system

Truss element /two different coordinate systems

- As before $\mathbf{T}:=\mathbf{T}_{\mathbf{u U}}=\mathbf{T}_{\mathbf{F f}}$ and in this case is given by,

$$
\mathbf{T}=\left[\begin{array}{cccc}
c_{1} & s_{1} & 0 & 0 \tag{393}\\
0 & 0 & c_{2} & s_{2}
\end{array}\right]
$$

- Accordingly, from $K=\mathbf{T}^{\mathrm{T}} \mathbf{k T}$ we obtain,

$$
\mathrm{K}=\frac{A E}{L}\left[\begin{array}{cccc}
c_{1}^{2} & c_{1} s_{1} & -c_{1} c_{2} & -c_{1} s_{2} \tag{394}\\
c_{1} s_{1} & s_{1}^{2} & -c_{2} s_{1} & -s_{1} s_{2} \\
-c_{1} c_{2} & -c_{2} s_{1} & c_{2}^{2} & c_{2} s_{2} \\
-c_{1} s_{2} & -s_{1} s_{2} & c_{2} s_{2} & s_{2}^{2}
\end{array}\right]
$$

- Finally the axial tensile force in the bar, which is the second line of $\mathrm{k}_{\mathrm{uU}}=\mathbf{k T}$ is (compare to one global coordinate in (387)):

$$
\begin{equation*}
T=A E / L\left(-c_{1} U_{1}-s_{1} U_{2}+c_{2} U_{3}+s_{2} U_{4}\right) \tag{395}
\end{equation*}
$$

$\rightarrow \mathrm{HW}$
Truss example 1 or 2 elements have different ave disterent

Figure 2: 3 dof truss with an angled support

$\begin{aligned} T & -1 & + & =\left[\begin{array}{l}i c \\ F_{3}\end{array}\right]^{-}\left[\begin{array}{ll}0 \\ 0\end{array}\right]\end{aligned}$
'1 $\lfloor\sqrt{3}\rfloor$
Reaction forces
$n_{2}:(0,1.2)$ are wand to find
$n_{3}:(0,1.6)$

$-U_{f}$

- Fp.
- axial force in all elements

in FEM cods this is formed internally

$$
\left.\begin{array}{llll}
e_{1}: \theta=90^{\circ}, 90^{\circ} & L_{e_{1}}=1.2+1.6=2.8 & L E M_{e_{1}}=[2,3] & M_{e_{1}}=[\tilde{1}, 3,2, \xi] \\
e_{2}: \theta_{1}, \theta_{2}=\operatorname{tg}^{-1} \frac{3}{4} & L_{e_{2}}=\sqrt{(1.2)^{2}+(1.6)^{2}}=2 & L E M_{e_{2}}=[2,1] & M_{e_{2}}=[1,3,1,2] \\
e_{3} & \theta_{1}, \theta_{2}=-45^{\circ} & L e_{3}=\sqrt{2}(1.6) & L E M=[3,1]
\end{array} \quad M_{e_{3}}=[i, \overline{3}, 1,2]\right)
$$

Truss Example

Slide 322:

Slide 322:
f'll to the calculati for e_{3}

$$
K=\left(\frac{A E}{}\right) \quad\left[\begin{array}{l|l|l}
k_{b} & -k_{b} & A E=1 \\
2 Q_{3}=1.6 \sqrt{2}
\end{array}\right.
$$

Foras fl_{3} :

$$
f_{D}^{e_{3}}=k^{l_{3} l_{3}}
$$

$$
\begin{gathered}
f_{D}^{e_{3}}=\left[\begin{array}{l}
.1105 \\
-.1105 \\
-.1105 \\
01105
\end{array}\right] \\
f^{e_{3}}=f_{6}^{\alpha_{3}}+f_{N}^{2_{3}} \leftrightarrow f_{D}^{e_{3}}
\end{gathered}
$$

$$
r_{e}=\frac{2}{3}\left[\begin{array}{l}
1+0105 \\
-1105 \\
\hline
\end{array}\right]
$$

global element bsed force sree of Pree dofs

$$
\begin{aligned}
& c=+\sqrt{2} \quad(\operatorname{co}(-459) \\
& K_{b}=\left[\begin{array}{cc}
c^{2} & c s \\
c s & s^{2}
\end{array}\right] \\
& s=-\frac{\sqrt{2}}{2} \quad\left(\sin \left(-45^{\circ}\right)\right)
\end{aligned}
$$

Truss example: Assembly of global system

$\underset{\mathbf{K}}{\sim}=\left[\begin{array}{ccc}0.32+0.221 & 0.24-0.221 & -0.24 \\ 0.24-0.221 & 0.18+0.221 & -0.18 \\ -0.24 & -0.18 & 0.3571+0.18\end{array}\right]$

nodal forces
$\Gamma .11051$ roil 「. 11051

$$
\begin{aligned}
& F=F_{n}+F_{n}=\left[\begin{array}{cc}
.1105 \\
-.1105 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
.1105 \\
-1.1105 \\
0
\end{array}\right] \\
& R U=F \rightarrow K^{\prime} \rightarrow\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{c}
-2123 \\
3.298 \\
-1.20
\end{array}\right]
\end{aligned}
$$

N- element axial fores

- Reaction forces
 $\rightarrow)_{2} .5$

$$
O=V_{2}^{e^{3}} T_{Q} \xrightarrow{n_{1}^{23}} U_{1}^{e_{3}}=+.5
$$

$$
v_{4}^{e_{3}}=3.298
$$

$$
{\underset{n}{i 3}}_{T_{3}} \rightarrow U_{3}^{e_{3}}=-2123
$$

$$
=0.8064
$$

