

Next step is calculating a:

Step 12: Solve global (free) dof \mathbf{a} from $\mathbf{K}\mathbf{a} = \mathbf{F}$

• Two major computational costs during FEM solve are:

- (a) Assembly: Refers to: all node, element, and dof set up; computation of local ke and fee; assembly of those to global system. This step scales linearly versus n_e (ne)
- ② Linear algebra solution: Ka = F: We solve for unknown a. Although conceptually simple, this step is a major source of computational cost. It scales higher than linear versus n_e ⇒ As the problem size increases this term becomes more dominant.
- Solution of Ka = F:
 - WE DO NOT OBTAIN a from $a = K^{-1}F$: We do not invert K.
 - We only solve the problem for the specific RHS of F.
 - In Comparison \mathbf{K}^{-1} corresponds to the solution of $\mathbf{K}\mathbf{a} = \mathbf{F}$ for n_f RHS of $\mathbf{F} = e_i, i = 1, ..., n_f$ where n_f is the number of rows (and columns) of \mathbf{K} .
 - We employ methods such as LU factorization that computationally only solve the problem for the given RHS F.
 - We take advantage of the structure of stiffness matrix: symmetry, bandedness, sparsity in choosing the right solution technique.

a =KXF,

- order of free dofs affects band of the matrix → various algorithms reorder free dofs such that the matrix band get smaller and the solution cost is optimized.
- In your term projects you can simply employ simply compute

433 / 456

Step 13: Assign a to nodes and elements

Step 13: Assign a to nodes and elements

Starting with 0:

In the element dofMap, we would end up with (0, 1, 2, ...) for global free dofs (0, 1, 2) and with (-0, -1, -2, -3, ...) for global prescribed dofs (0, 1,) so 0 is double used.

My trick is in eDOF I subtract 1 from the prescribed dofs global prescribed dofs (0, 1, 2) will become (-1, -2, -3)

Step 14: Compute prescribed dof forces

Next, are the support forces OR the forces of the prescribed dofs

 First, we compute reaction forces by adding up forces from individual elements that contribute to reaction forces:

 $R_1^2 = f_1^{e_1} + f_1^{e_2} = 0 + 0.5715 = 0.5715$ (397a)

$$R_1^3 = f_3^{e_1} + f_1^{e_3} = 0^4 + -0.5714 = -0.5714$$
 (397b)

$$R_2^3 = f_4^{e_1} + f_2^{e_3} = 0.4285 + 0.5714 = 0.9999$$
(397c)

325 / 456

What we need to do, for each element Loop over its dofs, those that are prescribed, add their forces to the global Fp

Prescribed nodeal forces in node output


```
for n = 1:nNodes

for dofi = \frac{1 + n}{n}ode(n).nndof num dof for node (n)

if node(n).ndof(dofi).p == true prescribed dof

posn = node(n).ndof(dofi).pos position of dof in global prescribed force F_p

node(n).ndof(dofi).f = Fp(-posn)

1. set prescribed dof force to corresponding force in global Fp (F_p)

2. posn < 0; prescribed dof

end

end
```

440 / 456

Input file format

dim 2 ndofpn 2 Nodes nNodes 3 id crd 100 220 3 1 1 Elements ne 3 id elementType matID neNodes eNodes 1 3 1 2 1 3 232232 3 3 1 2 1 2 PrescribedDOF np 3 node node_dof_index value 1 1 0.01 1 2 0 220 FreeDOFs nNonZeroForceFDOFs 1 node node_dof_index value 3 1 2.5 Materials nMat 2 id numPara Paras 1 2 100 1 2 2 200 2

453 / 456

Output file format

Nodes nNodes 3 id crd values forces position(verbose) prescribed_boolean(verbose) 100 a1_1 a1_2 F1_1 F1_2 -1 -2 (verbose) 1 1 (verbose) 220 a2_1 a2_2 F2_1 F2_2 1 -3 (verbose) 0 1 (verbose) a3_1 a3_2 F3_1 F3_2 2 3 (verbose) 0 0 (verbose) Elements ne 3 id elementType forces(verbose) specific output 1 3 fee1_1 fee1_2 fee1_3 fee1_4 (verbose) Te1 23 fee2_1 fee2_2 fee2_3 fee2_4 (verbose) Te2 33 fee3_1 fee3_2 fee3_3 fee3_4 (verbose) Te3

frome

- lines with (verbose) are only output for verboseOutput == 1. Obviously (verbose) is not printed in either case and is only printed for clarity here.
- ai_j: is value (solution) for node i dof number j;e.g., a3_1 is x displacement at node 3 (x = 1, y = 1).
- Fi_j: is force for node i dof number j;e.g., F3_1 is x force at node 3 (which should be equal to 2.5, why?)
- feei_j: is total force (foe + fDe) for element i dof number j;e.g., fee3_1 is the x force at its left node (global n₁).
- Last item of element output is specific to its type.
- For 2 node bar and truss elements Tei is the axial force in the element.

455 / 456

$$alcolate $b05\overline{V}M$
 $calcolate b05\overline{V}M$
 $5=.5$
 $color 5=.5$
 $color 5=.5$$$

Beam Example: Calculation of y, θ, M, V within element

- After the solution of global free dofs, they are transferred to elements.
- Once element dofs are know, we have the Displacement in the entire elements:

$$y(\xi) = N_1^e(\xi)a_1^e + N_2^e(\xi)a_2^e + N_3^e(\xi)a_3^e + N_4^e(\xi)a_4^e.$$

element shape functions are given in (421).

• Rotation: Obtained by differentiating previous equation w.r.t. x & noting that $\frac{dx}{d\xi} = \frac{L^e}{2}$:

$$\theta(\xi) = \frac{\mathrm{d}y}{\mathrm{d}x}(\xi) = \frac{\frac{\mathrm{d}y}{\mathrm{d}\xi}(\xi)}{\frac{\mathrm{d}x}{\mathrm{d}\xi}(\xi)} = \frac{2}{L^e} \left\{ \frac{\mathrm{d}N_1^e}{\mathrm{d}\xi}(\xi)a_1^e + \frac{\mathrm{d}N_2^e}{\mathrm{d}\xi}(\xi)a_2^e + \frac{\mathrm{d}N_3^e}{\mathrm{d}\xi}(\xi)a_3^e + \frac{\mathrm{d}N_4^e}{\mathrm{d}\xi}(\xi)a_4^e \right\}$$

Moment is directly obtained by differentiating the above equation:

$$M(\xi) = E(\xi)I(\xi)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(\xi) = E(\xi)I(\xi)\mathbf{B}^e(\xi)$$

= $E(\xi)I(\xi)\{B_1^e(\xi)a_1^e + B_2^e(\xi)a_2^e + B_3^e(\xi)a_3^e + B_4^e(\xi)a_4^e\}$ cf. (424) for \mathbf{B}^e

 Shear force is obtained by differentiating M w.r.t. x. It's a similar process to deriving θ from y with the difference that if EI are not constant we need to take it into account. For constant EI we have:

$$V(\xi) = \frac{\mathrm{d}M}{\mathrm{d}x}(\xi) = \frac{\frac{\mathrm{d}M}{\mathrm{d}\xi}(\xi)}{\frac{\mathrm{d}x}{\mathrm{d}\xi}(\xi)} = \frac{2EI}{L^e} \left\{ \frac{\mathrm{d}B_1^e}{\mathrm{d}\xi}(\xi)a_1^e + \frac{\mathrm{d}B_2^e}{\mathrm{d}\xi}(\xi)a_2^e + \frac{\mathrm{d}B_3^e}{\mathrm{d}\xi}(\xi)a_3^e + \frac{\mathrm{d}B_4^e}{\mathrm{d}\xi}(\xi)a_4^e \right\}$$

To obtain these fields for the entire beam we evaluate these equations for all elements.

374 / 456